Oracle8i

JDBC Developer’'s Guide and Reference

Release 3 (8.1.7)

July 2000
Part No. A83724-01

ORACLE

JDBC Developer’s Guide and Reference, Release 3 (8.1.7)

Part No. A83724-01

Copyright © 1996, 1999, 2000 Oracle Corporation. All rights reserved.
Primary Authors: Brian Wright, Thomas Pfaeffle

Contributing Author: Mike Sanko

Contributors: Sunil Kunisetty, Joyce Yang, Soulaiman Htite, Douglas Surber, Anthony Lai, Paul Lo,
Prabha Krishna, Ragamayi Bhyravabhotla, Patrick Day, Van Le, Andrew Philips, Naresh Kumar, Kristy
Browder, Bernie Harris, Ana Hernandez, Janice Wong, Jack Melnick, Tim Smith, Ellen Barnes, Susan
Kraft, Sheryl Maring, Angie Long

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and JDeveloper ™, Net8 ™, Oracle Objects ™, Oracle8 i™, Oracle8 ™,
Oracle7 ™, PL/SQL ™, SQL*Net®, and SQL*Plus® are trademarks or registered trademarks of Oracle
Corporation. All other company or product names mentioned are used for identification purposes only
and may be trademarks of their respective owners.

Contents

SENA US YOUT COMMEINES ..ottt et sttt tae et st ee et et st s s et st renerenans Xvii
P T AC .o ettt ettt ettt ettt ettt et XixX
{101 (T gL (Y0 I AN U o [11 0 1< ISR XiX
DOCUIMENT STIUCTUIE ...t ettt ettt et ettt e et e e e et e et e et e e sae e e e et et e eae e et e saesse e s eaeeenessenas XX
DOCUMENT CONMVENTIONS ...ttt ettt et s e ee e e s st e e e et ee s s saeeessabe s et eessaaeee s b bessassesssbbessesteeesses XXiii
REIATE DOCUMEBNES.eii ittt ettt ettt e e e s et e e et e e e sateeessbeeesataessabeaeesaaesessseesstbssessnbeesesresesaes XXiii

1 Overview

[T aY A oTo [UTw1 A To] o NN OO TSROV 1-2
WAL IS DB ...ttt sttt ettt a e et et ae et e e et e et et e et e st e et b e st s eteesteeabesneennas 1-2
JDBEC VEISUS SQLJ ..ottt ettt et ettt e st e e st e e e e te e e nte e e e et e eneeate e enneenreen 1-2

Overview of the Oracle JIDBC DIIVEIS.......ccce ettt ettt sttt et s e b s 1-5
Common Features of Oracle IDBC DIIVELScocoiiiiiiiieiicie ettt 1-6
JDBC THIN DIIVEL ..ottt sttt et et et e e e te et e e e et et e e st e ebaesteenbenneeaeas 1-7
JDBC OC DIIVEIS....iitietie ettt ettt ettt st sttt sttt e be e ab e be et e s ae et e s e e st et ae st s etbesbeeabesneennas 1-8
JDBC Server-Side ThIN DIIVEL ...ttt ettt st sre b ene s 1-8
JDBC Server-Side INTErNal DIIVET ..ottt s sr e ene s 1-8
ChooSing the APPrOPFIate DITVELcc.oiiiiiii it e 1-9

Overview of Application and Applet FUNCLIONATITY ..o 1-10
APPIICALION BASICSveviiiiie ettt ettt ettt bbb et en et ne s ben e es 1-10
AAPPIET BASICS ... vttt ettt et e b b bbb en e 1-10
(O] = Tod LI o Tq (=] 1Y o 1 SO 1-11

SEIVEI-SIOE BASICS.....uiiiiiiiiici sttt e st st et be st e e b besbeebbesbeeabe s be e e saeereas 1-12

SesSion and TranSACTION CONTEXT.......cccuiiiieiiiieiee ettt e e et e ee e s seee e e ste s s se e e s sabeeeesbbeseanes 1-12

CoNNECtiNG 10 the Database.......coiiueieie et ettt s eenees 1-12
ENVIFONMENTS QN SUPPOITc.iiiiiiiiiiiciiiet st 1-13
Supported JDK and JDBC VEISIONSccciiieiiiieiiieiee ittt 1-13
NI anNd Java ENVIFONMENTSc.oiuiiiiieiie ittt ettt bbbt 1-13
JDBC and the Oracle APPlICAtioN SEIVELcccooiiiiii it 1-14
IDBC @NA IDES ...ttt ittt sttt ettt et et es bbbt er et 1-14

Getting Started

Requirements and Compatibilities for Oracle IDBC DIiVersS........cccooiviiiiieiiine s 2-2
Verifying a JDBC Client INStallation ..ot 2-4
Check Installed Directories and FileS. ..o 2-4
Check the Environment Variables. ... e 2-5
Make Sure You Can Compile and RUN JAVA ..o 2-6
Determine the Version 0f the IDBC DIIVELccoviiiiiiiece e 2-7
Testing JDBC and the Database Connection: JADCCheCKUPcccooeiierieicence e 2-7

Basic Features

FIrst SEEPS 1N JDBC ...t s s b s e e 3-2
IMPOIT PACKAGES ... vttt et eb b bbb eh bbb et e 3-2
REQISLEr the JDBC DIIIVELS ...c.eiiiiii ittt bbbt b en e 3-3
Open a ConNnection t0 @ DAtaDASE ..ot e 3-3
Create a StatemMeNnt ODJECT.ocviii et 3-11
Execute a Query and Return a Result Set ODJECEccvieiiiiiiiiee e 3-11
Process the RESUIL SEL......cuiiiiiii i e s 3-11
Close the Result Set and Statement ODJECES ..o 3-12
Make Changes to the Database ... s 3-12
(©0] 0 0] 0 011 01 o - Vo =TT SRRP 3-13
Cl0SE the CONNECTION.ciiiiiie e bbb sr e b 3-14

Sample: Connecting, Querying, and Processing the Results ..., 3-15

DAtatyPe MAPPINGS .. .vve ettt sttt ettt ettt bbb e st b e st st b et eb e st eb et eb et b et bt en e ber e ben e 3-16
Table Of IMAPPINGS ..cvee et ettt e 3-16
Notes Regarding MapPiNgScccoeiriireiiene et e e bbb 3-18

Java Streams IN JDBCottt et ettt e b et bt r et er e 3-19

Streaming LONG or LONG RAW COIUMNS......ccooiiiiiieieie et 3-19

Streaming CHAR, VARCHAR, or RAW COIUMNS........ccociiiiiiiii e 3-24

Data Streaming and Multiple COIUMNSccooiiiiiiiie e e 3-25
Streaming LOBS and EXTErNal FIlEScoviiiiiiiiiie e 3-27
(O [Ty T g o = TS T Ut o OSSPSR 3-28
Notes and Precautions 0N STFEAMISccoviiriiiiriieire ettt e 3-28
Stored Procedure Calls in JIDBC ProgramS.........cccouiieirieinentnienese ettt 3-31
PL/ZSQL StOred PrOCEAUIES.......ccuiieiiieiie ettt ettt sttt e et en ettt st sneneesee e eneenens 3-31
JAVA STOFEA PrOCEAUIES ..ottt e bbb bbb en e 3-32
Processing SQL EXCEPTIONS.........ciiiiiiieie ittt e s s s s e s 3-33
Retrieving Error INfOrMation ..o e 3-33
Printing the STACK TraCe ... e 3-34

4 Overview of JDBC 2.0 Support

FNEFOTUCTION ..ottt bbbt eh bbb bbb et s 4-2
JDBC 2.0 Support: IDK 1.2.X VErsus JDK L.1X ...cccccoiiiiiiiriiiriirie s 4-3
DaAtatyYPE SUPPOIT ..ottt ettt b et er e st et en e 4-3
Standard FEAtUIE SUPPOITooviiiie ittt et ettt sae et es e et re s e e nne e 4-4
Extended FEAtUIE SUPPOITciii ittt ettt sttt ettt en e 4-5
Standard versus Oracle Performance Enhancement APIS ... 4-5
Migration from JDK 1.1.X 10 JIDK L.2.X c..cciciriiiiiiiieieieiee et s s 4-5
OVerview OF JIDBC 2.0 FEALUIES......co.ci ittt ittt sttt sttt st eb et eb et eb e st eb et en et eb e en e 4-7

5 Accessing and Manipulating Oracle Data

Data Conversion CONSIAEIAtIONS.ccoiiiiiie i e 5-2
Standard TYPes VErsUS OFaCle TYPESciiiiiieiiieiiete ettt en e 5-2
ConVerting SQL NULL Data.......cocoieiriiiieee ettt st st en e e sseese e e 5-2

Result Set and Statement EXIENSIONS.ccociiiiiiiiie e 5-3

Comparison of Oracle get and set Methods to Standard JDBC............cccoceoeniiiniincincincenes 5-4
Standard getODbject() MEthOd...........oo i e 5-4
Oracle getOracleObject() MEtNOM.cooiiiiiiii s 5-4
Summary of getObject() and getOracleObject() REtUrN TYPEScovvvreirereirririiiniriinieiies 5-6
Other getXXX() MEtNOUSc.oiiiiieiiieiie e e 5-7
Casting Your get Method RetUrn ValUEScooiiiiiiiieic e 5-10
Standard setObject() and Oracle setOracleObject() Methods...........cccoeveriieneincincinennn, 5-11
Other SetXXX() MELNOAS........cuiiei et e e e e 5-12

Limitations of the Oracle 8.0.Xx and 7.3.X JDBC DIIVEIScocoveeeiiieiiiee e e ecee e 5-18
Using Result Set Meta Data EXIENSIONSooiiiiiiieiece e e 5-19

6 Overview of Oracle Extensions

Introduction t0 Oracle EXIENSIONS ..ottt s e 6-2
Support Features of the Oracle EXIENSIONS ...t e 6-3
SUPPOIt FOr Oracle DAtALYPESc.ovieuiriiiirietirietistet sttt sttt e eb et eb e e eb e eb et b e b ben e ben e 6-3
SUPPOIt FOr Oracle ODJECEScciuiiiiei i 6-4
SuppOort fFor SChemMa NAMING......c.oii e e s e en e e 6-5
Oracle JDBC Packages and CIaSSES........cociiiiiiiiiiiiieiic e e s s 6-7
Package Oracle.SOl ... e 6-7
Package oracle. JabDC.ArIVET ... e 6-16
Package oracle.jdbc2 (for IDK 1.1.X ONIY).c.cc.ooiiiiiiiiiriciese e e 6-24
Oracle TYPE EXIENSIONSottt 6-26
Oracle ROWID TYPE ..ottt ettt et st b et es e sttt eb e st sb et e ben e nee e s aeneas 6-26
Oracle REF CURSOR TYPE CAtEQONYcorieuiriariietiietiieresietesie sttt st 6-27
Support for Oracle Extensions in 8.0.x and 7.3.X JDBC DIIVErS.........ccocconeiineinciineenenens 6-29

7 Working with LOBs and BFILEs

Oracle Extensions for LOBS and BFILES ..ot 7-2
Working With BLOBS @nNd CLOBScociuiiiiiiee ettt st se e eaeste e e stesne e e snesnens 7-3
Getting and Passing BLOB and CLOB LOCALOISc.ccieieririie s reeeeie e e e seeneenens 7-3
Reading and Writing BLOB and CLOB Datacccoveiiiiiinieieirieee et s 7-6
Creating and Populating @ BLOB 0r CLOB COIUMN ..ot 7-10
Accessing and Manipulating BLOB and CLOB Data.........ccccoueieiieeesinene e 7-12
Additional BLOB and CLOB FEATUIESc..ccuiiiiiieiiie et seeie et eseeie e esesieneas 7-13
WOFKING WILh BEILEScoiiiiiiiiiie ittt ettt et e b et b et eb et eb et en e ben e ben e 7-16
Getting and Passing BFEILE LOCALOIS..........ccuoiiiiriiiniiiricnee e e e 7-16
REAAING BFILE DALAeoviiviiiieeie ettt ettt sttt et st e s et es e nee e e neens 7-18
Creating and Populating @ BFILE COIUMNcoooiiiiiii e 7-19
Accessing and Manipulating BFILE Datac.coccoeieiiinienciniinecnecseises e 7-21
AddItIoNal BFILE FEATUIEScuiviiitiiitiie ettt bbb 7-22

Vi

8 Working with Oracle Object Types

MapPIiNgG Oracle ODJECLSc.oco i e 8-2
Using the Default STRUCT Class for Oracle ODjJECtS..........ccciiiiieiiiniie e 8-3
STRUCT Class FUNCLIONANILYc.ooviiiiiiiiiieiie s 8-3
Creating STRUCT ODbjects and DeSCIIPLOIScuiiiiieeiirieie e ee et 8-4
Retrieving STRUCT Objects and ALIFDULESccooeiiiiii i 8-7
Binding STRUCT Objects iNt0 StatemMEentS.........ccccviiiiiiieiriiee e 8-8
STRUCT Automatic Attribute BUFfEFING........cocoiiiiiii s 8-9
Creating and Using Custom Object Classes for Oracle ODbjectscoevviiceiinincce v 8-10
Relative Advantages of CustomDatum Versus SQLDataccooeeiiiieeieieniene e 8-10
Understanding Type Maps for SQLData Implementations............ccooeveneiencineinceneenne 8-11
Creating a Type Map Object and Defining Mappings for a SQLData Implementation .. 8-12
Understanding the SQLData INtErfaceccocooiviiii i 8-15
Reading and Writing Data with a SQLData Implementation...........ccc.covveniincncnennn, 8-17
Understanding the CustomDatum INterface.........ocooeieiiiiiii i 8-21
Reading and Writing Data with a CustomDatum Implementation............cc.ccocooveeeiinennns 8-23
Additional Uses for CUSTOMDATUMcocvciiiiiiiiee e 8-26
Using JPublisher to Create Custom ODJECt ClaSSES........ccvierierienieieee e 8-29
JPUBLISher FUNCHIONAIITYcooooiiiic e 8-29
JPUDIIShEr TYPE IMaPPINGS ..ottt ettt ettt bbb s e bes e e e eneeneas 8-29
Describing an ODJECT TYPE ..o e 8-33
Functionality for Getting Object Meta Datacccveiienieiie e 8-33
Steps for Retrieving Object Meta Datacccoovieieie it e 8-34

9 Working with Oracle Object References

Oracle Extensions for ObJect RETErENCES ... e 9-2
Overview of Object Reference FUNCLIONAIILY ..o 9-4
Object Reference Getter and Setter MethodsS ..o 9-4
KeyY REF Class MEtNOUS.........ooiiiie ettt sttt st e e e eneees 9-4
Retrieving and Passing an Object RETEreNCE ..o 9-6
Retrieving an Object Reference from a RESUIt Stcooieiiiiii i 9-6
Retrieving an Object Reference from a Callable Statement............cccoeoviniiniincncnnn 9-7
Passing an Object Reference to a Prepared StatemMent ... 9-8
Accessing and Updating Object Values through an Object Reference..........ccooooeiiiiiincnn. 9-9
Custom Reference Classes With JPUDIISher............cccooii 9-10

vii

10

11

12

viii

Working with Oracle Collections

Oracle Extensions for CoOEctioNS (AFTAYS) . ..ot e 10-2
Choices in Materializing COECTIONS ..ot e 10-2
Creating CoOlECLIONS ..o e 10-3

Overview of Collection (Array) FUNCLIONAIITYccoooiiiiiiiiic e 10-5
Array Getter and Setter MEtNOUScooi i e s 10-5
ARRAY Descriptors and ARRAY Class Functionality..........ccccccoiririeninnieneieeeeeee 10-6

ARRAY Performance EXtenSion MethodsS ... s 10-8
Accessing oracle.sql. ARRAY Elements as Arrays of Java Primitive Types......c.c.ccocveenne. 10-8
ARRAY Automatic Element BUFFEINGcoiiiiiiiiic e 10-9
ARRAY AULOMALIC INAEXING ...ttt e s 10-9

Creating aNd USING ATTAYS ..c.oiuiiieiieiirie st se it se et se et et et ens s st bbb bes bt e e sn e nn e 10-11
Creating ARRAY Objects and DesCriplOrS.......ccuiiiiiriirene e 10-11
Retrieving an Array and ItS EIEMENTS........coioiiiiiiiini s 10-14
Passing Arrays to Statement ODJECTS ..ot 10-19

Using a Type Map to Map Array EIEMENTS ...t 10-22

Custom Collection Classes With JPUBIISNEr ... 10-24

Accessing PL/SQL Index-by Tables

OVEIVIBW ..ottt e et e et e h e ek s s s s b b bbb b bbbt eb et 11-2
BiNAiNg IN PAramMEtEISoouiiiiiiirieiiierire sttt e s s s s e s s s s 11-4
RECEIVING OUT ParAGmMELEISovciiieiiietiiet ettt s eb e e bbb bbb e s 11-6
Registering the OUT ParamMeters.........coo ittt 11-6
Accessing the OUT Parameter VAlUES ..ot s 11-7

Result Set Enhancements

L@ 11T Y 1= TSSO 12-2
Result Set Functionality and Result Set Categories Supported in JDBC 2.0..........cccc.c..... 12-2
Oracle JDBC Implementation Overview for Result Set Enhancements............c.ccocevveinen. 12-5

Creating Scrollable or Updatable ReSUIT SEtSccooiiiiiiieiie e 12-8
Specifying Result Set Scrollability and Updatability...........ccccooeniinininiecee 12-8
Result Set Limitations and Downgrade RUIES...........cccooiiiiniiiiiiincc e 12-10

Positioning and Processing in Scrollable ResUlt Sets ... 12-13
Positioning in a Scrollable ReSUIL Set...........ccoiiiiiiei e 12-13

13

14

Processing a Scrollable RESUIt SEt ... 12-15

UPAating RESUIT SETS......c.uiiiiiie s s e bbb e e 12-18
Performing a DELETE Operation in @ ReSUIt Set ..o 12-18
Performing an UPDATE Operation in @ ReSUlt Set.........ccccoooiiiiiiniiiiiee e 12-19
Performing an INSERT Operation in @ ReSUlt Set ... 12-21
UPAAE CONTIICTS ..o e 12-23

FEECI SHZE ... e b e b 12-24
Setting the FELCN SIZEoiiiiii s 12-24
Use of Standard Fetch Size versus Oracle Row-Prefetch Setting ... 12-25

RETETCNING ROWS ...ttt s b bbb e 12-26

Seeing Database Changes Made Internally and Externally ... 12-27
SeeiNG INTEIrNAL CRANGESviviiiiiiie et 12-27
Seeing EXLErNal ChaNGESccoi ittt et st b e en s 12-28
Visibility versus Detection of External Changes...........cccovviiniinie s 12-29
Summary of Visibility of Internal and External Changes..........c.ccccocoviniiniinncincnen, 12-30
Oracle Implementation of Scroll-Sensitive ResUlt SetsScccooieiiriiiiie v 12-30

Summary of New Methods for Result Set ENhancementsc.cccoeveineincencinc s 12-32
Modified ConNECtion METNOAS. ..o e 12-32
NewW ReSUIt SEt METNOAS ..o e 12-32
New StatemMeNnt IMETNOASoiiiiee e e e 12-35
New Database Meta Data Methods ..o e 12-35

Performance Extensions

(O] oo F=Y (=l =T 1 (o] a1 1 o [TV 13-2
Overview of Update Batching MOdEelS ... 13-2
Oracle Update BAtCNING.......o.coviiiiictisiet ettt ettt er bbb saen e 13-4
Standard Update BAtChiNGcoveiiiiiiiee st 13-10

Additional Oracle Performance EXIENSIONSccccoiiiiiiiiiiincec e s 13-20
Oracle ROW PrefetChingottt 13-20
DefiniNg COIUMN TYPES «..uiiiiie ittt et e ettt eb et eb et eh bbb ben e 13-23
DatabaseMetaData TABLE_REMARKS RePOItiNGccccooierrininienieeneee e 13-26

Statement Caching

ADOUL STAtEMENT CACNING ...eiviiiiiici ettt e s 14-2
Basics Of Statement CaCNINGcoveviiiiiiee ettt e 14-2

Implicit StatemMent CaChiNGcviiiie s 14-2

EXplicit Statement CaChiNgccoo ittt 14-4
Comparing Implicit and Explicit Statement Caching..........ccccooeviniiieiinince e 14-4
UsSIiNg Statement CaChiNgociiiiiiiii et s 14-6
Enabling and Disabling Statement Cachingc.ccocoriiiiiiiiin e 14-6
Checking for Statement Creation StAtUS...........ccocoiiiiir i 14-7
Physically Closing a Cached StatemMent...........occiiiiriiniree e 14-7
Using Implicit Statement CaChiNg........ocooioiiiiiiie i e 14-8
Using Explicit Statement Caching.......cccoooieiriiiiie e 14-9

15 Connection Pooling and Caching

DALA SOUICES. ...ttt sttt et bt h st e ek et eb e er et er e et st ne s 15-2
A Brief Overview of Oracle Data Source SUpport for INDI ..o, 15-2
Data Source Features and PrOPEITIES........ccoo i e 15-3
Creating a Data Source Instance and Connecting (Without INDI)ccoceviiiiiinennee 15-6
Creating a Data Source Instance, Registering with JNDI, and Connectingc.c.c..... 15-7
(o o To [TaTo Ie-Ta o I I = ot o o SRR 15-11

CONNECTION POOTING ...ttt ettt bbb e e e e 15-12
(o] glal=Tod dTo] gl loTo] ITqlo J @0 g o7 o | £SO 15-12
Connection Pool Data Source Interface and Oracle Implementationc.ccccoceovvenne 15-13
Pooled Connection Interface and Oracle Implementationc.ccccovvviiiiinicinciincnne, 15-14
Creating a Connection Pool Data Source and CONNECHINGccocvvrreerereneeeneeeneciineeins 15-15

COoNNECLION CACHINGcviiiiici e 15-17
Overview of ConnNection Cachingcocoviiriini e 15-17
Typical Steps in Using a ConNection CaCheccocoeiiiiieniie i 15-20
Oracle Connection Cache Specification: OracleConnectionCache Interface.................... 15-23
Oracle Connection Cache Implementation: OracleConnectionCachelmpl Class 15-24
Oracle Connection Event Listener: OracleConnectionEventListener Class..................... 15-27

16 Distributed Transactions

OVEIVIBW ..ottt e e et e h e btk s s s b b b e h e e b bbbt bt 16-2
Distributed Transaction Components and SCENATIOSccverrerrerne st 16-2
Distributed Transaction CONCEPTS.ovviiiiiiiie ettt 16-3
OraCle XA PACKAGES.cecueieete ettt sttt ettt ettt eb e st b et eb et eb et bt eb et bbb nbebeas 16-5

XA COMPONENTS ..ottt ettt eb et e r st b e h et b e e et ee b en et erenr e 16-6

17

18

XA Data Source Interface and Oracle Implementation...........c.coooviiiiiniincnc e 16-6

XA Connection Interface and Oracle Implementation.............coveniniene s 16-7
XA Resource Interface and Oracle Implementationcccccocvoiiiineiiie e, 16-8
XA Resource Method Functionality and Input Parametersccocoveneinenncnnc s 16-9
XA ID Interface and Oracle Implementation.............ccoevinincne s 16-13
Error Handling and OptimizZationscoeoiiiiiiiiinciic e e 16-15
XA Exception Classes and Methods ..o s 16-15
Mapping between Oracle Errors and XA EFTOFS........coiiieieiirinieeseeneeeis s 16-16
XA EITOr HANATING .ottt 16-16
Oracle XA OPLIMIZALIONSc..oueiiiireie ittt e 16-17
Implementing a Distributed TranSaCtioN..........cccocciiiiie e 16-18
Summary of IMpPOorts fOr Oracle XA ...t 16-18
Oracle XA Code SAMPIEooiiieie ettt s et e 16-18

Java Transaction API

TraNSACLION OVEIVIEWcviiiiiietiiet ettt et e eb e b s bt eh bbb sttt 17-2
Global and Local TranSaCtioNs ... 17-2
Demarcating TraNSACTIONSccoiiiiie ettt ettt et et ee et s se e eenee st e sreeeeas 17-3
ENTISTING RESOUITES ...ttt ettt et ettt eb e eb e en e 17-3
TWO-Phase COMMIT......iiiiiiiiiie ittt ettt sttt st se et s s et erees et e e e e e 17-5
JTA LIMITATIONS ...ttt ettt et e a e et e e et e e e e en s es 17-7

ENBISTING RESOUITES ...ttt s s b b bbb e 17-7
Bind DataSource ODjJect in NAMESPACEccueiiriiieieiere ettt 17-8
Bind UserTransaction Object in NAamMESPACEccceoueieieiieiiiiie e 17-9
JTA Client-Side Database ENlISTMENTccoiiiiiiiiiice e 17-10
JTA Server-Side Database ENISTMENTcoiiiiiiiiiiiic e 17-13

Configuring Two-Phase COMMIt ENGINEc.cciiiiiiiiiiie e 17-15

Creating DataSource Objects Dynamically ... 17-17

JDBC RESLIICHIONS ...ttt e e s s b b bbb 17-18

Advanced Topics

JDBC AN NS ...ttt e st ettt et e b ere e s ae s e e s ae e sr et e e sbe st aesbeebbenbeebeeanis 18-2
How JDBC Drivers Perform NLS CONVEISIONS.........ccccocviiieivicie et 18-3
NLS SUPPOrt and OBJECT TYPES ..cueviviiiiireieiiet ettt e 18-5
CHAR and VARCHAR?2 Data Size Restrictions with the Thin Driver............ccccooeeena. 18-6

xi

JDBC Client-Side SECUNtY FEATUIES.......oiiii it e 18-8

JDBC Support for Oracle Advanced SECUNILYccovriiiiiiiiiiiieeieerte e 18-8
JDBC Support for Login AUtheNtiCAtiONccoieriiiieie e e 18-9
JDBC Support for Data Encryption and INtegrity ..o 18-10
IDBC TN APPIELS ..o ettt bbbt eb bbb 18-15
Connecting to the Database through the Applet ... 18-15
Connecting to a Database on a Different Host Than the Web Serverccccocooevninnns 18-17
Using Applets With FIreWallS ..ot e 18-20
PaCKAGING APPIETS ... b b e 18-23
Specifying an Applet in an HTML Page.......cocvuiiiiiiiree e 18-24
JDBC in the Server: the Server-Side Internal DriVer ... 18-26
Connecting to the Database with the Server-Side Internal DriVerccccoevniiiiennn 18-26
Exception-Handling Extensions for the Server-Side Internal Driver.........c..ccccoeoennen. 18-28
Session and Transaction Context for the Server-Side Internal Drivercccccoeuennee. 18-30
TeSting JDBC ON ThE SEIVEL ..ottt e ettt et bbb e et enaees 18-30
Loading an Application iNto the SEMVEN ... 18-32
Server-Side Character Set Conversion of oracle.sql.CHAR Dataccooovneineinenennnn. 18-33

19 Coding Tips and Troubleshooting

Xil

JDBC and MUIITRrEadiNgc.ooviviiiiiicic e s 19-2
Performance OPLIMIZATION ..o e e 19-6
Disabling Auto-CommIt IMOEcoiiiiiiiii i e 19-6
Standard Fetch Size and Oracle Row Prefetching............cooooiiiiii i 19-7
Standard and Oracle Update BatChingoceoviiiiiiniise e 19-7
COMMON PrOBIEMS ... e e 19-8
Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables.................... 19-8
Memory Leaks and RUNNING OUL OFf CUISOIScovoiiiiiiiiiieeiiei et 19-8
Boolean Parameters in PL/SQL Stored ProCedUIEScoviiieieneeie e 19-9
Opening More Than 16 OCI Connections fOr & ProCessc.ccocuviieienencieeneeeeeeeees 19-9
Basic DebUGQING PrOCEOUIEScoiiiiiiie ittt sttt bbb e e 19-11
Net8 Tracing to Trap NEtWOrK EVENTScocoviiiiiiiiiicie e e 19-11
Third Party Debugging TOOIScoco ittt st e e 19-13
Transaction Isolation Levels and AcCeSS IMOUES ..ot 19-14

20 Sample Applications

BASIC SAMPIES ...t bbb e e 20-2
Listing Names from the EMP Table—EmPployee.java.......cccccocooveviniiciiinecisee e 20-2
Inserting Names into the EMP Table—InsertExample.java........ccocooininiicisiiescne e 20-3

Samples of PL/SQL IN JDBC ..ot ettt sttt er e er et er e ben e ben e ben e 20-5
Calling PL/SQL Stored Procedures—PLSQLEXample.java.........c.cccoveneineincincinennnns 20-5
Executing Procedures in PL/SQL BIOCKS—PLSQL JAVA.......cccoiieriiiriiiieeie e 20-6
Accessing a PL/SQL Index-by Table from JDBC—IndexTableExample.java................. 20-10

INtErmMediate SAMPIES ..o e 20-18
Streams—StreamEXamMPIE.JAVAcoiiiiieiieie ettt ettt eneas 20-18
Multithreading—JdbCMTSaMPIE.JAVA.......coiiiiriiiiieiee e e 20-20

SaMPIES FOr IDBC 2.0 TYPES ...ccueicieieeie ettt ettt ettt ettt et ettt eb e 20-25
BLOBs and CLOBS—LODEXaMPIE.JAVAciieieiiiieieiie et 20-25
Weakly Typed Objects—PersonObJeCt.JaVa..........ccviiriiriiniee e 20-29
Weakly Typed Object References—StudentRefjava.........cccoeovvieiniiiine e 20-32
Weakly Typed Arrays—ArrayEXampPle.jaVa........cceiiiiiniie s 20-34

Samples for Oracle TYPe EXLENSTONS.........covriiiieiietiei et 20-37
REF CURSORS—REefCUrSOrEXamMPIe.JaVa.coeiiriiiiciiiiecie s 20-37
BFILES—FIlEEXAMPIEJAVA ...ttt e et sttt e 20-39

Samples for CUStOM ODJECE CIASSESc.ovvciriciirietiieti et e 20-42
SQLData Implementation—SQLDataEXample.java. ..o 20-42
CustomDatum Implementation—CustomDatumExample.javaccccoceoeiinniiicinnns 20-46

JDBC 2.0 Result Set Enhancement SAmMpPIES..........coviiiiiiirincce s 20-51
Positioning in a Result Set—ReSUItSET2.Javaccoocoiriiiiiieee e 20-51
Inserting and Deleting Rows in a Result Set—ResultSet3.java..........ccoccoovriniincinennen, 20-54
Updating Rows in a Result Set—ResultSetd.java.........ccoooooiiiriirine e 20-58
Scroll-Sensitive Result Set—ReSUILSET5.JaVa.......cooiiiiiiiiiieee e 20-60
Refetching Rows in a Result Set—ReSUItSet6.java..........ccouriiiiie i 20-63

Performance ENhancement SamPIES.........ooiiiiiiiiie e 20-68
Standard Update Batching—BatchUpdates.javacccccoeieeiininiecennc e 20-68
Oracle Update Batching with Implicit Execution—SetExecuteBatch.java............c.......... 20-70
Oracle Update Batching with Explicit Execution—SendBatch.java..........cc.ccoccoviinnnenne. 20-72
Oracle Row Prefetching Specified in Connection—RowPrefetch_connection.java........ 20-73
Oracle Row Prefetching Specified in Statement—RowPrefetch_statement.java............. 20-75
Oracle Column Type Definitions—DefineColumnType.java........ccccooeioevencieiinicieiinins 20-77

xiii

21

Xiv

Implicit Statement Caching—StmtCachel.java.........ccoccoviiiniiniinii e, 20-78

Explicit Statement Caching—StmtCache2.Javacccoceeieiiiieiiinece e 20-81
Samples for Connection Pooling and Distributed Transactionsccccocvvevnevncnceniene. 20-84
Data Source Without INDI—DataSOUICE.JAVAcvvreeireirenire e 20-84
Data Source with INDI—DataSourCeJNDIJaVacccceieieieiieie e 20-85
Pooled Connection—PooledCONNECLION.JAVA.........coviireiiireiiieiirieiseiise e 20-88
Oracle Connection Cache (dynamic)—CCachel.javaccccooreriiniiiiciniienice e 20-89
Oracle Connection Cache ("fixed with no wait")—CCache2.java...........ccccoceoereinrinnnnne. 20-91
XA with Suspend and RESUME—XAZJAVAcccvereeereieieie ettt esiere e 20-93
XA with Two-Phase Commit Operation—XAZ4JaVaccccceveeeieiiieiineciie e 20-98
SAMPIE APPIET ..o bbbt e e 20-104
HTML Page—JdbCAPPIEL.NTM .oviiii e e 20-104
Applet Code—IADCAPPIELJAVAooviiviiiie ettt 20-105
JDBC versus SQLJ SAMPIE COUEcuciiiiie e 20-108
SQL Program to Create Tables and ODJECTS........cccocviiieiireiie e 20-108
JDBC Version of the SAmpPle Code ... 20-110
SQLJ Version of the SAmMpPle COAE........ooiiiiricee s 20-114
Reference Information
Valid SQL-JDBC Datatype MapPiNgSccereerieririeinie ettt st ere e er e eressenenienen 21-2
Supported SQL and PL/SQL DAtAtYPESccceoviviiriiiieiiirieeirie e e e s e 21-5
Embedded SQLO2 SYNTAXo.ciiiiirieiirietinieiisie sttt e eb s b e b e bbb e e 21-9
Time aNd DAt LItEralS.........ociiiiiiiiicie ettt s 21-9
SCALAN FUNCTIONS ..viiiiie et b bbb bbb bbb 21-11
LIKE ESCAPE CRAIACTEISecuiiviiieie ettt ettt et sttt sttt es et see e e s e e 21-12
OULEE JOUNS ..ottt e e e s e b b bbb bbb 21-12
FUNCLION CAll SYNTAX ...ttt ettt et e e et se e ee et e e 21-13
SQLI2 t0 SQL Syntax EXAMIPIEcueiieeeieiiiece et e 21-13
Oracle JDBC Notes and LIMitations ..ot e 21-15
CUISOFINEIMIE ...ttt ettt r ettt r et eb e eb e nr e nr e 21-15
SQLOI2 OULET JOIN ESCAPES ...vveviveieeiereeie sttt sttt e sttt 21-15
PL/SQL TABLE, BOOLEAN, and RECORD TYPES ...ccueiuereriiieiienie ettt enens 21-15
IEEE 754 Floating POiNt COMPIIANCEcoiiiieiie ettt ettt 21-16
Catalog Arguments to DatabaseMetaData Calls ..o 21-16
SQLWAINING ClASS. ... ceiuietieiiie ettt sttt sttt ettt st re et st st e e s et seebe et es e be e see e e nnens 21-16

BIiNA DY NAIME ..ottt ettt et e et et se e e reneas 21-16

Related INFOIMELION ..o et sb e eee e se s 21-18
Oracle JDBC Drivers and SQLJ.......co.ooi ittt 21-18
JAVA TECANOIOGY ... e e s 21-18

A JDBC Error Messages

General Structure 0f IDBC EFror IMESSAQES.cuurietirieiirietirie sttt st ere e ere st ere e ene e ereneeneeas

GENETAl JIDBC IMIBSSAQES. ... ettt sttt sttt ettt ettt ettt bbb st b e st b e st b e st eb et eb et eb et eb et eb et bt er e
JDBC Messages Sorted by ORA NUMDET ...t e
JDBC Messages Sorted AIPhabetiCally ..o

TTC IMIBSSAGES. ...ttt et ettt sttt e h et e b e h et h etttk en e eh e er e nn ek et en e e
TTC Messages Sorted by ORA NUMDET ..o
TTC Messages Sorted Alphabetically ...

XV

XVi

Send Us Your Comments

JDBC Developer’s Guide and Reference, Release 3 (8.1.7)
Part No. A83724-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

Electronic mail — jpgcomnt@us.oracle.com

FAX - 650-506-7225. Attn: Java Platform Group, Information Development Manager
Postal service:

Oracle Corporation

Information Development Manager

500 Oracle Parkway, Mailstop 40p978

Redwood Shores, CA 94065

USA

Please indicate if you would like a reply.

If you have problems with the software, please contact your local Oracle World Wide Support Center.

Xvii

xviii

Preface

This preface introduces you to the Oracle8i JDBC Developer’s Guide and Reference,
discussing the intended audience, structure, and conventions of this document. A
list of related Oracle documents is also provided.

Intended Audience

This manual is intended for anyone with an interest in JDBC programming but
assumes at least some prior knowledge of the following:

Java
SQL
Oracle PL/SQL

Oracle databases

Xix

Document Structure

The Oracle JIDBC Developers Guide and Reference contains 21 chapters and one

XX

appendix:

Chapter 1, "Overview"

Chapter 2, "Getting Started"

Chapter 3, "Basic Features"

Chapter 4, "Overview of JDBC
2.0 Support”

Chapter 6, "Overview of Oracle
Extensions"

Chapter 5, "Accessing and
Manipulating Oracle Data"

Chapter 7, "Working with LOBs
and BFILEs"

Chapter 8, "Working with
Oracle Object Types"

Chapter 9, "Working with
Oracle Object References"

Chapter 10, "Working with
Oracle Collections"

This chapter provides an overview of the Oracle
implementation of JDBC and the Oracle JDBC
driver architecture.

This chapter introduces the Oracle JDBC drivers
and some scenarios of how you can use them.
This chapter also guides you through the basics
of testing your installation and configuration.

This chapter covers the basic steps in creating
any JDBC application. It also discusses
additional basic features of Java and JDBC
supported by the Oracle JDBC drivers.

This chapter presents an overview of JDBC 2.0
features and describes the differences in how
these features are supported in the JDK 1.2.x and
JDK 1.1.x environments.

This chapter provides an overview of the JDBC
extension classes supplied by Oracle.

This chapter describes data access using the
Oracle datatype formats rather than Java
formats.

This chapter covers the Oracle extensions to the
JDBC standard that let you access and
manipulate LOBs and LOB data.

This chapter explains how to map Oracle object
types to Java classes by using either standard
JDBC or Oracle extensions.

This chapter describes the Oracle extensions to
standard JDBC that let you access and
manipulate object references.

This chapter discusses the Oracle extensions to
standard JDBC that let you access and
manipulate arrays and their data.

Chapter 11, "Accessing PL/SQL

Index-by Tables"

Chapter 12, "Result Set
Enhancements"

Chapter 13, "Performance
Extensions"

Chapter 14, "Statement
Caching"

Chapter 15, "Connection
Pooling and Caching"

Chapter 16, "Distributed
Transactions"

Chapter 17, "Java Transaction
API"

Chapter 18, "Advanced Topics"

Chapter 19, "Coding Tips and
Troubleshooting"

Chapter 20, "Sample
Applications"

This chapter describes special methods to bind
and register PL/SQL index-by tables in JDBC.

This chapter discusses JDBC 2.0 result set
enhancements such as scrollable result sets and
updatable result sets, including support issues
under JDK 1.1.x.

This chapter describes Oracle extensions to the
JDBC standard that enhance the performance of
your applications.

This chapter describes Oracle extension
statements for caching.

This chapter discusses JDBC 2.0 data sources
(and their usage of INDI), connection pooling
functionality (a framework for connection
caching implementations), and a sample
connection caching implementation provided by
Oracle.

This chapter covers distributed transactions,
otherwise known as global transactions, and
standard XA functionality. (Distributed
transactions are sets of transactions, often to
multiple databases, that have to be committed in
a coordinated manner.)

This chapter describes how to use the JDBC
connections within a JTA global transaction in
order to include all changes to multiple
databases within a transaction.

This chapter describes advanced JDBC topics
such as using NLS, working with applets, the
server-side driver, and embedded SQL92 syntax.

This chapter includes coding tips and general
guidelines for troubleshooting your JDBC
applications.

This chapter presents sample applications that
highlight advanced JDBC features and Oracle
extensions.

XXi

Chapter 21, "Reference This chapter contains detailed JDBC reference

Information" information.
Appendix A, "JDBC Error This appendix lists JDBC error messages and the
Messages" corresponding ORA error numbers.

xXii

Document Conventions

This book uses Solaris syntax, but file names and directory names for Windows NT
are the same, unless otherwise noted.

The term [ORACLE_HOMVE] is used to indicate the full path of the Oracle home
directory.

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this manual:

Convention Meaning

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

<> Angle brackets enclose user-supplied names.
[1 Brackets enclose optional clauses from which you can choose one or
none.

Related Documents
This section lists other documentation of interest.

See the following additional documents available from the Oracle Java Platform
group:
« Oracle8i Java Developer’s Guide
This book introduces the basic concepts of Java in Oracle8i and provides
general information about server-side configuration and functionality.

Information that pertains to the Oracle Java platform as a whole, rather than to
a particular product (such as JDBC, SQLJ, or EJBs) is in this book.

=« Oracle8i JPublisher User’s Guide

This book describes how to use the JPublisher utility to translate object types
and other user-defined types to Java classes. If you are developing SQLJ or
JDBC applications that use object types, VARRAY types, nested table types, or

XXiii

XXiV

object reference types, then JPublisher can generate custom Java classes to map
to them.

Oracle8i SQLJ Developer’s Guide and Reference

This book covers the use of SQLJ to embed static SQL operations directly into
Java code, covering SQLJ language syntax and SQLJ translator options and
features. Both standard SQLJ features and Oracle-specific SQLJ features are
described.

Oracle8i Java Stored Procedures Developer’s Guide

This book discusses Java stored procedures—programs that run directly in the
Oracle8i server. With stored procedures (functions, procedures, database
triggers, and SQL methods), Java developers can implement business logic at
the server level, thereby improving application performance, scalability, and
security.

Oracle8i Enterprise JavaBeans and CORBA Developer’s Guide

This book describes the Oracle extensions to the Enterprise JavaBeans and
CORBA specifications.

You can also refer to the following documents from the Oracle Server Technologies
group.

Net8 Administrator’s Guide

This book contains information about the Oracle8 Connection Manager and
Net8 network administration in general.

Oracle8i National Language Support Guide

This book contains information about NLS environment variables, character
sets, and territory and locale settings. In addition, it contains an overview of
common NLS issues, typical scenarios, and NLS considerations for OCI and
SQL programmers.

Oracle Advanced Security Administrator’s Guide

This book describes features of the Oracle Advanced Security Option (formerly
known as ANO or ASO).

Oracle8i Application Developer’s Guide - Fundamentals

This book introduces basic design concepts and programming features in using
an Oracle8i database and creating database access applications.

Oracle8i Application Developer’s Guide - Large Objects (LOBs)

This book describes general functionality and features of database large objects
(LOBs) in Oracle8i.

Oracle8i Application Developer’s Guide - Object-Relational Features

This book contains general information about structured objects and other
object-relational database features in Oracle8i.

Oracle8i Supplied PL/SQL Packages Reference

This book documents PL/SQL packages available as part of the Oracle8i server,
some of which may be useful to call from JDBC applications.

PL/SQL User’s Guide and Reference

PL/This book explains the concepts and features of PL/SQL, Oracle’s
procedural language extension to SQL.

Oracle8i SQL Reference

This book contains a complete description of the content and syntax of the SQL
commands and features used to manage information in an Oracle database.

Oracle8i Reference
This book contains general reference information about the Oracle8i server.
Oracle8i Error Messages

This book contains information about error messages that can be passed by the
Oracle8i server.

Documentation from the following Oracle groups may also be of interest.

Oracle8i Application Server documentation

This documentation contains information about how the Oracle8i Application
Server supports JDBC.

Oracle8i JDeveloper Suite documentation

This documentation contains information about how the Oracle8i JDeveloper
Suite supports JDBC.

XXV

XXVi

1

Overview

This chapter provides an overview of the Oracle implementation of JDBC, covering
the following topics:

Introduction

Overview of the Oracle JDBC Drivers

Overview of Application and Applet Functionality
Server-Side Basics

Environments and Support

Overview 1-1

Introduction

Introduction

This section presents a brief introduction to Oracle JDBC, including a comparison to
SQLJ.

What is JDBC?

JDBC (Java Database Connectivity) is a standard Java interface for connecting from
Java to relational databases. The JDBC standard was defined by Sun Microsystems,
allowing individual providers to implement and extend the standard with their
own JDBC drivers.

JDBC is based on the X/Open SQL Call Level Interface and complies with the
SQL92 Entry Level standard.

In addition to supporting the standard JDBC API, Oracle drivers have extensions to
support Oracle-specific datatypes and to enhance performance.

JDBC versus SQLJ

This section has the following subsections:
« Advantages of SQLJ over JDBC for Static SQL
« General Guidelines for Using JDBC and SQLJ

Developers who are familiar with the Oracle Call Interface (OCI) layer of client-side
C code will recognize that JDBC provides the power and flexibility for the Java
programmer that OCI does for the C or C++ programmer. Just as with OCI, you can
use JDBC to query and update tables where, for example, the number and types of
the columns are not known until runtime. This capability is called dynamic SQL.
Therefore, JDBC is a way to use dynamic SQL statements in Java programs. Using
JDBC, a calling program can construct SQL statements at runtime. Your JDBC
program is compiled and run like any other Java program. No analysis or checking
of the SQL statements is performed. Any errors that are made in your SQL code
raise runtime errors. JDBC is designed as an API for dynamic SQL.

However, many applications do not need to construct SQL statements dynamically
because the SQL statements they use are fixed or static. In this case, you can use
SQLJ to embed static SQL in Java programs. In static SQL, all the SQL statements are
complete or "textually evident" in the Java program. That is, details of the database
object, such as the column names, number of columns in the table, and table name,
are known before runtime. SQLJ offers advantages for these applications because it
permits error checking at precompile time.

1-2 JDBC Developer's Guide and Reference

Introduction

The precompile step of a SQLJ program performs syntax-checking of the embedded
SQL, type checking against the database to assure that the data exchanged between
Java and SQL have compatible types and proper type conversions, and schema
checking to assure congruence between SQL constructs and the database schema.
The result of the precompilation is Java source code with SQL runtime code which,
in turn, can use JDBC calls. The generated Java code compiles and runs like any
other Java program.

Although SQLJ provides direct support for static SQL operations known at the time
the program is written, it can also interoperate with dynamic SQL through JDBC.
SQLJ allows you to create JDBC objects when they are needed for dynamic SQL
operations. In this way, SQLJ and JDBC can co-exist in the same program.
Convenient conversions are supported between JDBC connections and SQLJ
connection contexts, as well as between JDBC result sets and SQLJ iterators. For
more information on this, see the Oracle8i SQLJ Developer’s Guide and Reference.

The syntax and semantics of SQLJ and JDBC do not depend on the configuration
under which they are running, thus enabling implementation on the client or
database side or in the middle tier.

Advantages of SQLJ over JDBC for Static SQL

While JDBC provides a complete dynamic SQL interface from Java to relational
databases, SQLIJ fills a complementary role for static SQL.

Although you can use static SQL statements in your JDBC programs, they can be
represented more conveniently in SQLJ. Here are some advantages you gain in
using SQLJ over JDBC for static SQL statements:

= SQLJ source programs are more concise than equivalent JDBC programs,
because SQLJ provides a shorter syntax.

« SQLJ provides strong typing of connections (and the sets of SQL entities that
they access), query outputs, and return parameters.

« SQLJcan use database connections to type-check static SQL code at translation
time. JDBC, being a completely dynamic API, does not perform any
type-checking until run-time.

« SQLJ programs allow direct embedding of Java bind expressions within SQL
statements. JDBC requires separate getter and/or setter call statements for each
bind variable.

« SQLJ provides simplified rules for calling SQL stored procedures and functions.

Overview 1-3

Introduction

General Guidelines for Using JDBC and SQLJ
SQLJ is effective in the following circumstances:

= You want to be able to check your program for errors at translation-time, rather
than at run-time.

= You want to write an application that you can deploy to another database.
Using SQLJ, you can customize the static SQL for that database at
deployment-time.

= You are working with a database that contains compiled SQL. You will want to
use SQLJ because you cannot compile SQL statements in a JDBC program.

JDBC is effective in the following circumstances:

= Your program uses dynamic SQL. For example, you have a program that builds
queries in real-time or has an interactive query component.

= You do not want to have a SQLJ layer during deployment or development. For
example, you might want to download only the JDBC Thin driver and not the
SQLJ runtime libraries to minimize download time over a slow link.

Note: You can intermix SQLJ code and JDBC code in the same
source. This is discussed in the Oracle8i SQLJ Developer’s Guide and
Reference.

1-4 JDBC Developer's Guide and Reference

Overview of the Oracle JDBC Drivers

Overview of the Oracle JDBC Drivers

This section introduces the Oracle JDBC drivers, their basic architecture, and some
scenarios for their use.

Oracle provides the following JDBC drivers:

« Thin driver, a 100% Java driver for client-side use without an Oracle
installation, particularly with applets

« OCIl drivers (OCI8 and OCI7) for client-side use with an Oracle client
installation

« server-side Thin driver, which is functionally the same as the client-side Thin
driver, but is for code that runs inside an Oracle server and needs to access a
remote server, including middle-tier scenarios

« server-side internal driver for code that runs inside the target server (that is,
inside the Oracle server that it must access)

Figure 1-1 illustrates the driver-database architecture for the JDBC Thin, OCI, and
server-side internal drivers.

The rest of this section describes common features of the Oracle drivers and then
discusses each one individually, concluding with a discussion of some of the
considerations in choosing the appropriate driver for your application.

Overview 1-5

Overview of the Oracle JDBC Drivers

Figure 1-1 Driver-Database Architecture

Oracle8i

JDBC Thin Driver

Java Sockets Java Engine
I Server-Side Thin Driver
JDBC OCI Driver S_QL Engine JDBC Server-Side
Internal Driver

OCI C Library ey PL/SQL Engine

Common Features of Oracle JDBC Drivers

KPRB C Library

~——
Oracle8i

The server-side and client-side Oracle JDBC drivers provide the same basic
functionality. They all support the following standards and features:

« eitherJ]DK 1.2.x / JDBC 2.0 or JDK 1.1.x / JDBC 1.22 (with Oracle extensions for

JDBC 2.0 functionality)

These two implementations use different sets of class files.

« the same syntax and APIs
« the same Oracle extensions

« full support for multi-threaded applications

Generally speaking, the only differences between the drivers are in how they

connect to the database and how they transfer data.

1-6 JDBC Developer's Guide and Reference

Overview of the Oracle JDBC Drivers

Notes:
= The server-side internal driver supports only JDK 1.2.x.

« Most JDBC 2.0 functionality, including that for objects, arrays,
and LOBs, is available in a JDK 1.1.x environment through
Oracle extensions.

« Starting with release 8.1.6, JDK 1.0.2 is no longer supported.

JDBC Thin Driver

The Oracle JDBC Thin driver is a 100% pure Java, Type IV driver. It is targeted for
Oracle JDBC applets but can be used for applications as well. Because it is written
entirely in Java, this driver is platform-independent. It does not require any
additional Oracle software on the client side.

For applets it can be downloaded into a browser along with the Java applet being
run. The HTTP protocol is stateless, but the Thin driver is not. The initial HTTP
request to download the applet and the Thin driver is stateless. Once the Thin
driver establishes the database connection, the communication between the browser
and the database is stateful and in a two-tier configuration.

The JDBC Thin driver allows a direct connection to the database by providing an
implementation of TCP/IP that emulates Net8 and TTC (the wire protocol used by
OCI) on top of Java sockets. Both of these protocols are lightweight implementation
versions of their counterparts on the server. The Net8 protocol runs over TCP/IP
only.

The driver supports only TCP/IP protocol and requires a TNS listener on the
TCP/IP sockets from the database server.

Note: When the JDBC Thin driver is used with an applet, the
client browser must have the capability to support Java sockets.

Using the Thin driver inside an Oracle server or middle tier is considered
separately, under "JDBC Server-Side Thin Driver" below.

Overview 1-7

Overview of the Oracle JDBC Drivers

JDBC OCI Drivers

The JDBC OCI drivers (OCI8 for Oracle8/8i and OCI7 for Oracle7) are Type Il
drivers targeted for client-server Java applications programmers. They require an
Oracle client installation, so are Oracle platform-specific and are not suitable for
applets.

The OCI drivers, written in a combination of Java and C, convert JDBC invocations
to calls to the Oracle Call Interface (OCI), using native methods to call C entry
points. These calls are then sent over Net8 to the Oracle database server.

These drivers use the OCI libraries, C-entry points, Net8, CORE libraries, and other
necessary files on the client machine on which they are installed.

The OCI drivers provide the highest compatibility with the different Oracle 7, 8, and
8i versions. They also support all installed Net8 adapters, including IPC, named
pipes, TCP/IP, and IPX/SPX.

JDBC Server-Side Thin Driver

The Oracle JDBC server-side Thin driver offers the same functionality as the
client-side Thin driver, but runs inside an Oracle database and accesses a remote
database.

This is especially useful in two situations:
« toaccess a remote Oracle server from an Oracle server acting as a middle tier

« more generally, to access one Oracle server from inside another, such as from
any Java stored procedure or Enterprise JavaBean

There is no difference in your code between using the Thin driver from a client
application or from inside a server.

Note: Statementcancel () and set Quer yTi neout () methods
are not supported by the server-side Thin driver.

JDBC Server-Side Internal Driver

The Oracle JDBC server-side internal driver supports any Java code that runs inside
an Oracle database, such as in a Java stored procedures or Enterprise JavaBean, and
must access the same database. This driver allows the Java virtual machine (JVM) to
communicate directly with the SQL engine.

1-8 JDBC Developer's Guide and Reference

Overview of the Oracle JDBC Drivers

The server-side internal driver, the JVM, the database, the KPRB (server-side) C
library, and the SQL engine all run within the same address space, so the issue of
network round trips is irrelevant. The programs access the SQL engine by using
function calls.

The server-side internal driver is fully consistent with the client-side drivers and
supports the same features and extensions. For more information on the server-side
internal driver, see "JDBC in the Server: the Server-Side Internal Driver" on

page 18-26.

Choosing the Appropriate Driver

Consider the following when choosing which JDBC driver to use for your
application or applet:

If you are writing an applet, you must use the JDBC Thin driver. JDBC
OCl-based driver classes will not work inside a Web browser, because they call
native (C language) methods.

If you want maximum portability, then choose the JDBC Thin driver. You can
connect to an Oracle server from either an application or an applet using the
JDBC Thin driver.

If you are writing a client application for an Oracle client environment and need
maximum performance, then choose the JDBC OCI driver.

For code that runs in an Oracle server acting as a middle tier, use the server-side
Thin driver.

If your code will run inside the target Oracle server, then use the JDBC
server-side internal driver to access that server. (You can also access remote
servers using the server-side Thin driver.)

Overview 1-9

Overview of Application and Applet Functionality

Overview of Application and Applet Functionality

This section compares and contrasts the basic functionality of JDBC applications
and applets, and introduces Oracle extensions that can be used by application and
applet programmers.

Application Basics

You can use either the Oracle JDBC Thin driver or the JDBC OCI driver for a client
application. Because the JDBC OCI driver uses native methods, there can be
significant performance advantages in using this driver for your applications.

An application that can run on a client can also run in the Oracle server, using the
JDBC server-side internal driver.

If you are using a JDBC OCI driver in an application, then the application will
require an Oracle installation on its clients. For example, the application will require
the installation of Net8 and client libraries.

Both the OCI drivers and the Thin driver offer support for data encryption and
integrity checksum features of the Oracle Advanced Security option (formerly
known as ANO or ASO). See "JDBC Client-Side Security Features" on page 18-8.
Such security is not necessary for the server-side internal driver.

Applet Basics

This section describes the issues you should take into consideration if you are
writing an applet that uses the JDBC Thin driver.

For more about applets and a discussion of relevant firewall, browser, and security
issues, see "JDBC in Applets" on page 18-15.

Applets and Security

Without special preparations, an applet can open network connections only to the
host machine from which it was downloaded. Therefore, an applet can connect to
databases only on the originating machine. If you want to connect to a database
running on a different machine, you have two options:

= Use Oracle8 Connection Manager on the host machine. The applet can connect
to Oracle8 Connection Manager, which in turn connects to a database on
another machine.

« Use signed applets, which can request socket connection privileges to other
machines.

1-10 JDBC Developer’s Guide and Reference

Overview of Application and Applet Functionality

Both of these topics are described in greater detail in "Connecting to the Database
through the Applet" on page 18-15.

The Thin driver offers support for data encryption and integrity checksum features
of the Oracle Advanced Security option. See "JDBC Client-Side Security Features"
on page 18-8.

Applets and Firewalls

An applet that uses the JDBC Thin driver can connect to a database through a
firewall. See "Using Applets with Firewalls" on page 18-20 for more information on
configuring the firewall and on writing connect strings for the applet.

Packaging and Deploying Applets

To package and deploy an applet, you must place the JDBC Thin driver classes and
the applet classes in the same zip file. This is described in detail in "Packaging
Applets" on page 18-23.

Oracle Extensions

A number of Oracle extensions are available to Oracle JDBC application and applet
programmers, in the following categories:

« type extensions (such as ROWIDs and REF CURSOR types)
= wrapper classes for SQL types (the or acl e. sql package)

« support for custom Java classes to map to user-defined types
« extended LOB support

« extended connection, statement, and result set functionality
« performance enhancements

See Chapter 6, "Overview of Oracle Extensions" for an overview of type extensions
and extended functionality, and succeeding chapters for further detail. See
Chapter 13, "Performance Extensions" regarding Oracle performance enhancements.

Overview 1-11

Server-Side Basics

Server-Side Basics

By using the Oracle JDBC server-side internal driver, code that runs in an Oracle
database, such as in Java stored procedures or Enterprise JavaBeans, can access the
database in which it runs.

For a complete discussion of the server-side driver, see "JDBC in the Server: the
Server-Side Internal Driver" on page 18-26.

Session and Transaction Context

The server-side internal driver operates within a default session and default
transaction context. For more information on default session and transaction context
for the server-side driver, see "Session and Transaction Context for the Server-Side
Internal Driver" on page 18-30.

Connecting to the Database

The server-side internal driver uses a default connection to the database. You can
connect to the database with either the Dri ver Manager . get Connect i on()
method or the Oracle-specific Or acl eDri ver class def aul t Connecti on()
method. For more information on connecting to the database with the server-side
driver, see "Connecting to the Database with the Server-Side Internal Driver" on
page 18-26.

1-12 JDBC Developer’s Guide and Reference

Environments and Support

Environments and Support

This section provides a brief discussion of platform, environment, and support
features of the Oracle JDBC drivers. The following topics are discussed:

« Supported JDK and JDBC Versions

« JNI and Java Environments

«» JDBC and the Oracle Application Server
« JDBC and IDEs

Supported JDK and JDBC Versions

With release 8.1.6, Oracle has two versions of the Thin and OCI drivers—one that is
compatible with JDK 1.2.x and one that is compatible with JDK 1.1.x. The JDK 1.2.x
versions support standard JDBC 2.0. The JDK 1.1.x versions support most JDBC 2.0
features, but must do so through Oracle extensions because JDBC 2.0 features are
not available in JDK 1.1.x versions.

Very little is required in migrating from a JDK 1.1.x environment to a JDK 1.2.x
environment. For information, see "Migration from JDK 1.1.x to JDK 1.2.X" on
page 4-5.

Notes:
« The server-side internal driver supports only JDK 1.2.x.
« Beginning with release 8.1.6, JDK 1.0.2 is no longer supported.

« Each driver implementation uses its own JDBC classes ZIP
file—cl asses12. zi p for JDK 1.2.x versions, and
cl asses111. zi p for IDK 1.1.x versions.

For information about supported combinations of driver versions, JDK versions,
and database versions, see "Requirements and Compatibilities for Oracle JDBC
Drivers" on page 2-2.

JNI and Java Environments

Beginning with release 8.1.6, Oracle JDBC OCI drivers use the standard JNI (Java
Native Interface) to call Oracle OCI C libraries. Prior to 8.1.6, when the OCI drivers
supported JDK 1.0.2, they used NMI (Native Method Interface) for C calls. NMI was

Overview 1-13

Environments and Support

an earlier specification by Sun Microsystems and was the only native call interface
supported by JDK 1.0.2.

Because JNI is now supported by Oracle JDBC, you can use the OCI drivers with
Java virtual machines other than that of Sun Microsystems—in particular, with
Microsoft and IBM JVMs. These JVMs support only JNI for native C calls.

JDBC and the Oracle Application Server

The Oracle Application Server (OAS) is a collection of middleware services and
tools that provide a scalable, robust, secure, and extensible platform for distributed,
object-oriented applications. The OAS supports access to applications from both
Web clients (browsers) using the Hypertext Transfer Protocol (HTTP), and CORBA
clients, which use the Common Object Request Broker Architecture (CORBA) and
the Internet Inter-ORB Protocol (I10P).

You can use the JDBC OCI drivers on a middle tier in conjunction with OAS
(formerly Web Application Server, or WAS) versions 3.0 and higher—the OAS
bundles JDBC with its distribution. For more information about the use of JDBC
with the OAS, refer to the Oracle Application Server documentation.

JDBC and IDEs

The Oracle JDeveloper Suite provides developers with a single, integrated set of
products to build, debug, and deploy component-based database applications for
the Oracle Internet platform. The Oracle JDeveloper environment contains
integrated support for JDBC and SQLJ, including the 100% pure JDBC Thin driver
and the native OCI drivers. The database component of Oracle JDeveloper uses the
JDBC drivers to manage the connection between the application running on the
client and the server. See your Oracle JDeveloper documentation for more
information.

1-14 JDBC Developer’s Guide and Reference

2

Getting Started

This chapter begins by discussing compatibilities between Oracle JDBC driver
versions, database versions, and JDK versions. It then guides you through the basics
of testing your installation and configuration, and running a simple application.
The following topics are discussed:

« Requirements and Compatibilities for Oracle JDBC Drivers

« \erifying a JDBC Client Installation

Getting Started 2-1

Requirements and Compatibilities for Oracle JDBC Drivers

Requirements and Compatibilities for Oracle JDBC Drivers

Table 2-1 lists the compatibilities between Oracle JDBC driver versions and Oracle
database versions. The JDK versions supported by each JDBC driver version are
also listed.

Note: Notice that starting with release 8.1.6, the Oracle JDBC
drivers no longer support JDK 1.0.x versions.

Table 2-1 JDBC Driver-Database Compatibility
Database
Driver Versions JDK Versions
Versions Supported Supported Drivers Available Remarks
8.1.6 8.1.6,8.1.5,8.0.6, 1.2.x,1.1.x JDBC Thin driver The Thin driver is now also
8.0.5,8.0.4,7.34 JDBC OCI driver available in the server W_|th the
standard server installation.
JDBC server-side Thin driver This has the same usage and
JDBC server-side internal driver fur}ctlor_lahty as the cll_ent-5|de
Thin driver, for accessing a
(supports 8.1.6 database and JDK database f insid
1.2.x only) remote database from inside a
- database.
8.1.5 8.1.5,8.0.6,8.0.5, 1.1.x,1.0.x JDBC Thin driver Both client- and server-side
8.04,7.34 JDBC OCI driver drivers offer f_uII support for
structured objects when run
JDBC server-side internal driver against an 8.1.5 database.
(supports 8.1.5 database and JDK
1.1.x only)
8.0.6 8.0.6,8.0.5,8.0.4, 1.1.x,1.0x JDBC Thin driver
7.34

JDBC OCI driver

Note: the JDBC server-side internal
driver is not available for 8.0.x and
prior versions.

2-2 JDBC Developer’'s Guide and Reference

Requirements and Compatibilities for Oracle JDBC Drivers

Table 2-1 JDBC Driver-Database Compatibility(Cont.)
Database

Driver Versions JDK Versions

Versions Supported Supported Drivers Available

8.0.5 8.0.5,8.0.4,7.34 1.1x, 1.0x JDBC Thin driver
JDBC OCI driver
Note: the JDBC server-side internal
driver is not available for 8.0.x and
prior versions.

8.0.4 8.04,7.3.4 1.1.x,1.0.x JDBC Thin driver
JDBC OCI driver
Note: the JDBC server-side internal
driver is not available for 8.0.x and
prior versions.

7.3.4 7.3.4 1.1.x,1.0.x JDBC Thin driver

JDBC OCI driver

Note: the JDBC server-side internal
driver is not available for 8.0.x and

prior versions.

Notes:

« Different JDKs require different class files—classes in

cl asses12. zi p,cl asses11l. zi p,and cl asses102. zi p,

respectively.

« The JDBC drivers do not support structured objects when run against
an 8.0.x database. This is because JDBC depends on PL/SQL functions

that did not exist in those releases.

= There is no structured object or LOB support in Oracle 7.3.x.

= Any client-side driver might work with 7.x databases prior to
7.3.4, but this has not been tested and is not supported.

Getting Started 2-3

Verifying a JDBC Client Installation

Verifying a JDBC Client Installation
This section covers the following topics:
« Check Installed Directories and Files
« Check the Environment Variables
« Make Sure You Can Compile and Run Java
« Determine the Version of the JDBC Driver
« Testing JDBC and the Database Connection: JdbcCheckup

Installation of an Oracle JDBC driver is platform-specific. Follow the installation
instructions for the driver you want to install in your platform-specific
documentation.

This section describes the steps of verifying an Oracle client installation of the JDBC
drivers. It assumes that you have already installed the driver of your choice.

If you have installed the JDBC Thin driver, no further installation on the client
machine is necessary (the JDBC Thin driver requires a TCP/IP listener to be
running on the database machine).

If you have installed the JDBC OCI driver, you must also install the Oracle client
software. This includes Net8 and the OCI libraries.

Check Installed Directories and Files

This section assumes that you have already installed the Sun Microsystems Java
Developer’s Kit (JDK) on your system (although other forms of Java are also
supported). Oracle offers JDBC drivers compatible with either JDK 1.2.x versions or
JDK 1.1.x versions.

Installing the Oracle JServer products creates, among other things, an
[ORACLE_HOVE] / j dbc directory containing these subdirectories and files:

« deno/sanpl es: The sanpl es subdirectory contains sample programs,
including examples of how to use SQL92 and Oracle SQL syntax, PL/SQL
blocks, streams, user-defined types, additional Oracle type extensions, and
Oracle performance extensions.

« doc: The doc directory contains documentation about the JDBC drivers.

« |ib:Thelibdirectory contains . zi p files with these required Java classes:

2-4 JDBC Developer’'s Guide and Reference

Verifying a JDBC Client Installation

— classesl12. zi p contains the classes for use with the JDK 1.2.x—all the
JDBC driver classes except the classes necessary for NLS support.

— nls_charset 12. zi p contains the classes necessary for NLS support with
the JDK 1.2.x.

— jta.zipandjndi. zipcontain classes for the Java Transaction APl and
the Java Naming and Directory Interface for JDK 1.2.x. These are only
required if you will be using JTA features for distributed transaction
management or JNDI features for naming services. (These files can also be
obtained from the Sun Microsystems Web site, but it is advisable to use the
versions from Oracle, because those have been tested with the Oracle
drivers.)

— classesll1. zi p contains the classes for use with the JDK 1.1.x—all the
JDBC driver classes except the classes necessary for NLS support.

cl asses111. zi p also contains Oracle extensions that allow you to use
JDBC 2.0 functionality for objects, arrays, and LOBs under JDK 1.1.x.

— nl s_charset 11. zi p contains the classes necessary for NLS support with
the JDK 1.1.x.

Thenl s_charset 12. zi pand nl s_char set 11. zi p files provide support
for specific NLS character sets. They have been separated out from the

cl asses*. zi p files to give you the option of excluding character sets in
situations where complete NLS support is not needed. For more information on
nl s_charset12. zi pand nl s_charset 11. zi p, see "NLS Support and
Obiject Types" on page 18-5.

« readme.txt:Thereadne. txt file contains late-breaking and release-specific
information about the drivers that might not be in this manual.

Check that all these directories have been created and populated.

Check the Environment Variables

This section describes the environment variables that must be set for the JDBC OCI
driver and the JDBC Thin driver, focusing on the Sun Microsystems Solaris and
Microsoft Windows NT platforms.

You must set the CLASSPATH for your installed JDBC OCI or Thin driver.
Depending on whether you are using the JDK 1.2.x versions or 1.1.x versions, you
must set one of these values for the CLASSPATH:

Getting Started 2-5

Verifying a JDBC Client Installation

or:

[Oracle Hone]/jdbc/lib/classesl2.zip
(and optionally [Oracl e Hone]/jdbc/lib/nls_charset12. zi p) for full
NLS character support)

[Oracle Hone]/jdbc/libl/lclasseslll.zip
(and optionally [Oracl e Hone]/jdbc/lib/nls_charset11. zi p) for full
NLS character support)

Ensure that there is only one cl asses*. zi p file version and one
nl s_charset *. zi p file version in your CLASSPATH.

Note: If you will be using JTA features or INDI features, both of
which are discussed in Chapter 15, "Connection Pooling and
Caching", then you will also need to have j ta. zi pandj ndi . zi p
in your CLASSPATH.

JDBC OCI Drivers: If you are installing the JDBC OCI driver, you must also set the
following value for the library path environment variable

On Solaris, set LD_LI BRARY_PATH as follows:
[Gacle Hone]/lib

This directory contains the | i boci j dbc8. so shared object library.
On Windows NT, set PATH as follows:
[Cacle Hore]\lib

This directory contains the oci j dbc8. dl | dynamic link library.

JDBC Thin Drivers: If you are installing the JDBC Thin driver, you do not have to set
any other environment variables.

Make Sure You Can Compile and Run Java

To further ensure that Java is set up properly on your client system, go to the
sanpl es directory (for example, C: \ or acl e\ or a81\ j dbc\ deno\ sanpl es if
you are using the JDBC driver on a Windows NT machine), then see if j avac (the
Java compiler) and j ava (the Java interpreter) will run without error. Enter:

j avac

2-6 JDBC Developer’'s Guide and Reference

Verifying a JDBC Client Installation

then enter:
j ava

Each should give you a list of options and parameters and then exit. Ideally, verify
that you can compile and run a simple test program.

Determine the Version of the JDBC Driver

If at any time you must determine the version of the JDBC driver that you installed,
you can invoke the get Dri ver Ver si on() method of the
Or acl eDat abaseMet aDat a class.

Here is sample code showing how to do it:

inport java.sql.*;
inport oracle.jdbc.driver.*;

cl ass JDBCVersi on
{

public static void main (Sring args[])
throws SQException

{
/! Load the Qacle JDBC driver

Dri ver Manager . regi sterDri ver
(new oracl e.jdbc. driver.Qacl elxiver());
Gonnection conn = Driver Manager . get Gonnect i on
("jdbc:oracl e:thin: @ost:port:sid',"scott","tiger");

I/l Greate O acle DatabaseMt aData obj ect
Dat abaseMet aDat a neta = conn. get Met aDat a() ;

/1 gets driver info:
Systemout. println("JDBC driver versionis " + neta. getDriverVersion());

Testing JDBC and the Database Connection: JdbcCheckup

The sanpl es directory contains sample programs for a particular Oracle JDBC
driver. One of the programs, JdbcCheckup. j ava, is designed to test JDBC and the
database connection. The program queries you for your user name, password, and
the name of a database to which you want to connect. The program connects to the
database, queries for the string "Hel | o Wor | d", and prints it to the screen.

Getting Started 2-7

Verifying a JDBC Client Installation

Go to the sanpl es directory and compile and run JdbcCheckup. j ava. If the
results of the query print without error, then your Java and JDBC installations are
correct.

Although JdbcCheckup. j ava is a simple program, it demonstrates several
important functions by executing the following:

= imports the necessary Java classes, including JDBC classes
« registers the JDBC driver

= connects to the database

« executes a simple query

= outputs the query results to your screen

"First Steps in JDBC" on page 3-2, describes these functions in greater detail. A
listing of JdbcCheckup. j ava for the JDBC OCI driver appears below.

/*

* This sanpl e can be used to check the JDBC installation.

* Just run it and provide the connect information. It wll select
* "Hello Wrld" fromthe database.

*/

/1 You need to inport the java. sgl package to use JDBC
inport java.sql.*;

/1 V& inport java.io to be able to read fromthe comvand |ine
inport java.io.*;

cl ass JdbcCheckup
{
public static void nmain(String args[])
throws SQException, |CException
{
/1 Load the Gracle JDBC dri ver
Dri ver Manager . regi ster Dri ver (new oracl e. j dbc. dri ver. Oracl eDriver());

/1 Pronpt the user for connect infornation

Systemout. printIn("M ease enter information to test connection to
the dat abase");

Sring user;

Sring password;

Sring database;

user = readEntry("user: ");

2-8 JDBC Developer’'s Guide and Reference

Verifying a JDBC Client Installation

int slash_index = user.indexd('/");
if (slash_index !=-1)
{
password = user. substring(sl ash_i ndex + 1);
user = user.substring(0, slash_index);
}
el se
password = readEntry("password: ");
dat abase = readEntry("dat abase(a TNSNAME entry): ");

Systemout. print ("Connecting to the database...");
Systemout . flush();

Systemout. println("Gnnecting...");
Gonnection conn = Driver Manager . get Gonnect i on
("jdbc: oracl e:oci 8: @ + database, user, password);

Systemout. println("connected.");

I/l reate a statenent
Satenent stnt = conn.createStatenent();

/! Do the SQL "Hello Wrld" thing
Resul t Set rset = stni. executeQuery("select 'Hello VWrld
fromdual ");

while (rset.next())
Systemout.printin(rset.getString(1));

/] close the result set, the statenment and connect

rset.close();

stm.close();

conn. cl ose() ;

Systemout. println("Your JDBCinstallationis correct.");

}

/1l Wility function to read a line fromstandard i nput
static Sring readEntry(String pronpt)

{

Getting Started 2-9

Verifying a JDBC Client Installation

try

SringBuffer buffer = new SringBuffer();
Systemout . print (pronpt);

Systemout. fl ush();

int ¢ = Systemin.read();

while (¢ !'="\n" & c !=-1)

buf f er. append((char)c);
c = Systemin.read();

}
return buffer.toSring().tring);
}
cat ch(| CException e)
{
return "";
}

2-10 JDBC Developer's Guide and Reference

3

Basic Features

This chapter covers the most basic steps taken in any JDBC application. It also
describes additional basic features of Java and JDBC supported by the Oracle JDBC
drivers.

The following topics are discussed:

First Steps in JDBC

Sample: Connecting, Querying, and Processing the Results
Datatype Mappings

Java Streams in JDBC

Stored Procedure Calls in JDBC Programs

Processing SQL Exceptions

Basic Features 3-1

First Steps in JDBC

First Steps in JDBC

This section describes how to get up and running with the Oracle JDBC drivers.
When using the Oracle JDBC drivers, you must include certain driver-specific
information in your programs. This section describes, in the form of a tutorial,
where and how to add the information. The tutorial guides you through creating
code to connect to and query a database from the client.

To connect to and query a database from the client, you must provide code for these
tasks:

Import Packages
Register the JDBC Drivers
Open a Connection to a Database

Create a Statement Object

1
2
3
4
5. Execute a Query and Return a Result Set Object
6. Process the Result Set

7. Close the Result Set and Statement Objects

8. Make Changes to the Database

9. Commit Changes

10. Close the Connection

You must supply Oracle driver-specific information for the first three tasks, which
allow your program to use the JDBC API to access a database. For the other tasks,
you can use standard JDBC Java code as you would for any Java application.

Import Packages

Regardless of which Oracle JDBC driver you use, include the following i mpor t
statements at the beginning of your program (j ava. mat h only if needed):

i mport java.sql.*; for standard JDBC packages

i mport java.math.*; for Bi gDeci mal and Bi gl nt eger classes
Import the following Oracle packages when you want to access the extended

functionality provided by the Oracle drivers. However, they are not required for the
example presented in this section:

3-2 JDBC Developer's Guide and Reference

First Steps in JDBC

i mport oracle.jdbc.driver.*; for Oracle extensions to JDBC

i mport oracle.sql.*;

For an overview of the Oracle extensions to the JDBC standard, see Chapter 6,
"Overview of Oracle Extensions".

Register the JDBC Drivers

You must provide the code to register your installed driver with your program. You
do this with the static r egi st er Dri ver () method of the JDBC Dri ver Manager
class. This class provides a basic service for managing a set of JDBC drivers.

Note: Alternatively, you can use the f or Name() method of the
j ava. | ang. C ass class to load the JDBC drivers directly. For
example:

Class.forNanme ("oracle.jdbc.driver.OacleDriver");

However, this method is valid only for JIDK-compliant Java virtual
machines. It is not valid for Microsoft Java virtual machines.

Because you are using one of Oracle’s JDBC drivers, you declare a specific driver
name string to r egi st er Dri ver (). You register the driver only once in your Java
application.

Dri ver Manager . regi sterDri ver (new oracl e.jdbc.driver. Qaclebriver());

Open a Connection to a Database

Open a connection to the database with the static get Connect i on() method of
the JDBC Dri ver Manager class. This method returns an object of the JDBC
Connect i on class that needs as input a user name, password, connect string that
identifies the JDBC driver to use, and the name of the database to which you want
to connect.

Connecting to a database is a step where you must enter Oracle JDBC
driver-specific information in the get Connect i on() method. If you are not
familiar with this method, continue reading the "Understanding the Forms of
getConnection()" section below.

Basic Features 3-3

First Steps in JDBC

If you are already familiar with the get Connect i on() method, you can skip
ahead to either of these sections, depending on the driver you installed:

« "Opening a Connection for the JDBC OCI Driver" on page 3-9
« "Opening a Connection for the JDBC Thin Driver" on page 3-10

Notes:

« WithJDK 1.2, using JINDI (Java Naming and Directory
Interface) is becoming the recommended way to make
connections. See "A Brief Overview of Oracle Data Source
Support for INDI" on page 15-2 and "Creating a Data Source
Instance, Registering with JNDI, and Connecting" on page 15-7.

« If you are using the Thin driver, be aware that it does not
support OS authentication in making the connection. As a
result, special logins are not supported.

« This discussion in this section does not apply to the server-side
internal driver, which uses an implicit connection. See
"Connecting to the Database with the Server-Side Internal
Driver" on page 18-26.

Understanding the Forms of getConnection()

The Dri ver Manager class get Connect i on() method whose signatures and
functionality are described in the following sections:

= "Specifying a Database URL, User Name, and Password" on page 3-5

« "Specifying a Database URL That Includes User Name and Password" on
page 3-5

« "Specifying a Database URL and Properties Object" on page 3-6

If you want to specify a database name in the connection, it must be in one of the
following formats:

= a Net8 keyword-value pair
« astring of the form <host_name>:<port_number>:<sid> (Thin driver only)
=« a TNSNAMES entry (OCI driver only)

For information on how to specify a keyword-value pair or a TNSNAMES entry, see
your Net8 Administrator’s Guide.

3-4 JDBC Developer's Guide and Reference

First Steps in JDBC

Specifying a Database URL, User Name, and Password

The following signature takes the URL, user name, and password as separate
parameters:

get Gonnection(String UR, Sring user, String passworad);

Where the URL is of the form:
j dbc: oracl e: <dri vert ype>: @dat abase>
The following example connects user scot t with password ti ger to a database
with SID or ¢l through port 1521 of host nyhost , using the Thin driver.
Qonnection conn = Driver Manager . get Gonnecti on

("jdbc: oracl e: thi n: @yhost: 1521: orcl ", "scott", "tiger");
If you want to use the default connection for an OCI driver, specify either:

Qonnection conn = Driver Manager . get Gonnecti on
("j dbc: oracl e: oci 8: scott/tiger@);
or:

Qonnection conn = Driver Manager . get Gonnecti on
("jdbc: oracl e:oci 8: @, "scott", "tiger");

For all JDBC drivers, you can also specify the database with a Net8 keyword-value
pair. The Net8 keyword-value pair substitutes for the TNSNAMES entry. The
following example uses the same parameters as the preceding example, but in the
keyword-value format:

Qonnection conn = Driver Manager . get Gonnecti on
(jdbc: oracl e: oci 8: @§Host Sring","scott","tiger");

or:

Qonnection conn = Driver Manager . get Gonnecti on
("] dbc: or acl e: oci 8: @descri pti on=(addr ess=(host = nyhost)
(protocol =t cp) (port=1521)) (connect _data=(sid=orcl)))","scott", "tiger");

Specifying a Database URL That Includes User Name and Password

The following signature takes the URL, user name, and password all as part of a
URL parameter:

get Gonnection(String LR);

Where the URL is of the form:

Basic Features 3-5

First Steps in JDBC

j dbc: oracl e: <dri vert ype>: <user>/ <passwor d>@dat abase>

The following example connects user scot t with password t i ger to a database on
host myhost using the OCI driver. In this case, however, the URL includes the
userid and password, and is the only input parameter.

Qonnection conn = Driver Manager . get Gonnecti on
("j dbc: oracl e: oci 8: scott/tiger @yhost);

If you want to connect with the Thin driver, you must specify the port number and
SID. For example, if you want to connect to the database on host myhost that has a
TCP/IP listener up on port 1521, and the SI D (system identifier) is or cl :

Qonnection conn = Driver Manager . get Gonnecti on
("jdbc: oracl e:thin:scott/tiger@yhost: 1521: orcl);

Specifying a Database URL and Properties Object

The following signature takes a URL, together with a properties object that specifies
user name and password (perhaps among other things):

get Gonnection(String UR, Properties info);

Where the URL is of the form:

j dbc: oracl e: <dri vert ype>: @dat abase>

In addition to the URL, use an object of the standard Java Pr oper ti es class as
input. For example:

java.util.Properties info = newjava. util.Properties();
info.put ("user", "scott");

info.put ("password',"tiger");

info.put ("default RowPrefetch","15");

get Gonnection ("jdbc: oracl e:oci 8: @, i nfo);

Table 3-1 lists the connection properties that Oracle JDBC drivers support.

Table 3-1 Connection Properties Recognized by Oracle JDBC Drivers

Short
Name Name Type Description
user n/a String the user name for logging into the
database
password n/a String the password for logging into the database

3-6 JDBC Developer's Guide and Reference

First Steps in JDBC

Table 3—-1 Connection Properties Recognized by Oracle JDBC Drivers (Cont.)

Short

Name Name Type Description

database server String the connect string for the database

internal_logon n/a String arole, such as sysdba or sysoper, that

allows you to log on as sys

defaultRowPrefetch prefetch String the default number of rows to prefetch
(containing from the server (default value is "10")
integer
value)

remarksReporting remarks String "true" if get Tabl es() and
(containing get Col unms() should report
boolean TABLE_REMARKS; equivalent to using
value) set Remar ksReporti ng() (default

value is "false")

defaultBatchValue batchvalue String the default batch value that triggers an
(containing execution request (default value is "10")
integer
value)

includeSynonyms synonyms String "true" to include column information from
(containing predefined "synonym" SQL entities when
boolean you execute a Dat aBaseMet aDat a
value) get Col unms () call; equivalent to

connection set | ncl udeSynonyns() call
(default value is "false")

See Table 18-4, "OCI Driver Client Parameters for Encryption and Integrity" and
Table 18-5, "Thin Driver Client Parameters for Encryption and Integrity" for
descriptions of encryption and integrity drivers.

Using Roles for Sys Logon

To specify the role (mode) for sys logon, use the i nt er nal _| ogon connection
property. (See Table 3-1, "Connection Properties Recognized by Oracle JDBC
Drivers", for a complete description of this connection property.) To logon as sys,
setthe i nt er nal _| ogon connection property to sysdba or sysoper.

Basic Features 3-7

First Steps in JDBC

Note: The ability to specify a role is supported only for sys user
name.

Example The following example illustrates how to use the i nt er nal _| ogon and
sysdba arguments to specify sys logon.

/linport packages and register the driver

inport java.sql.*;

inport java. nath.*;

Dri ver Manager . regi sterDri ver (new oracl e.jdbc.driver. Oaclebriver());

//specify the properties object

java.util.Properties info = newjava. util.Properties();
info.put ("user", "sys");

info.put ("password’, "change on_install");

info.put ("internal _| ogon","sysdba");

//specify the connecti on obj ect
Gonnection conn = Driver Manager . get Connect i on
("j dbc: oracl e: t hi n: @at abase", i nfo);

Properties for Oracle Performance Extensions Some of these properties are for use with
Oracle performance extensions. Setting these properties is equivalent to using
corresponding methods on the Or acl eConnect i on object, as follows:

« Setting the def aul t RowPr ef et ch property is equivalent to calling
set Def aul t RowPr ef et ch() .

See "Oracle Row Prefetching" on page 13-20.

« Setting the r emar ksReport i ng property is equivalent to calling
set Remar ksReporting().

See "DatabaseMetaData TABLE_REMARKS Reporting" on page 13-26.

« Setting the def aul t Bat chVal ue property is equivalent to calling
set Def aul t Execut eBat ch() .

See "Oracle Update Batching" on page 13-4.

3-8 JDBC Developer's Guide and Reference

First Steps in JDBC

Example The following example shows how to use the put () method of the
java.util.Properti es class, in this case to set Oracle performance extension
parameters.

/linport packages and register the driver

inport java.sql.*;

inport java. nath.*;

Dri ver Manager . regi sterDri ver (new oracl e.jdbc.driver. Qaclebriver());

//specify the properties obj ect

java.util.Properties info = newjava. util.Properties();
info.put ("user", "scott");

info.put ("password", "tiger");

info.put ("default RowProfetch","20");

i nfo.put ("defaultBatchval ue", "5");

//specify the connecti on obj ect
Gonnection conn = Driver Manager . get Gonnect i on
("j dbc: oracl e: t hi n: @at abase", i nfo);

Opening a Connection for the JDBC OCI Driver

For the JDBC OCI driver, you can specify the database by a TNSNAMES entry. You
can find the available TNSNAMES entries listed in the file t nsnames. or a on the
client computer from which you are connecting. On Windows NT, this file is located
in the [ORACLE_HOVE] \ NETWORK\ ADM N directory. On UNIX systems, you can
find itin the/ var/ opt/ or acl e directory.

For example, if you want to connect to the database on host nyhost as user scot t
with password t i ger that has a TNSNAMES entry of MyHost St ri ng, enter:

Qonnection conn = Driver Manager . get Gonnecti on
("jdbc: oracl e: oci 8: @¥Hbst Sring", "scott", "tiger");

Note that both the ": " and "@ characters are necessary.

For the JDBC OCI and Thin drivers, you can also specify the database with a Net8
keyword-value pair. This is less readable than a TNSNAMES entry but does not
depend on the accuracy of the TNSNAMES. ORA file. The Net8 keyword-value pair
also works with other JDBC drivers.

For example, if you want to connect to the database on host nyhost that has a
TCP/IP listener up on port 1521, and the Sl D (system identifier) isor cl , use a
statement such as:

Basic Features 3-9

First Steps in JDBC

Qonnection conn = Driver Manager . get Gonnecti on
("j dbc: or acl e: oci 8: @descri pti on=(addr ess=(host = nyhost)
(protocol =t cp) (port=1521)) (connect _dat a=(sid=orcl)))","scott", "tiger");

Note: Oracle JDBC does not support login timeouts. Calling the
static Dri ver Manager . set Logi nTi meout () method will have
no effect.

Opening a Connection for the JDBC Thin Driver

Because you can use the JDBC Thin driver in applets that do not depend on an
Oracle client installation, you cannot use a TNSNAMES entry to identify the database
to which you want to connect. You have to either:

« Explicitly list the host name, TCP/IP port and Oracle SID of the database to
which you want to connect.

or:

« Use a keyword-value pair list.

Note: The JDBC Thin driver supports only the TCP/IP protocol.

For example, use this string if you want to connect to the database on host myhost
that has a TCP/IP listener on port 1521 for the database S| D (system identifier)
or cl . You can logon as user scot t , with password t i ger:

Qonnection conn = Dri ver Manager . get Gonnecti on

("jdbc: oracl e: thi n: @yhost: 1521: orcl ", "scott", "tiger");
You can also specify the database with a Net8 keyword-value pair. This is less
readable than the first version, but also works with the other JDBC drivers.

Qonnection conn = Driver Manager . get Gonnecti on
("jdbc: oracl e: thin: @descri pti on=(addr ess=(host =nyhost)
(protocol =t cp) (port=1521)) (connect _dat a=(si d=orcl)))", "scott", "tiger");

3-10 JDBC Developer’'s Guide and Reference

First Steps in JDBC

Notes: Oracle JDBC does not support login timeouts. Calling the
static Dri ver Manager . set Logi nTi meout () method will have
no effect.

Create a Statement Object

Once you connect to the database and, in the process, create your Connecti on
object, the next step is to create a St at enent object. The cr eat eSt at ement ()
method of your JDBC Connect i on object returns an object of the JDBC

St at ement class. To continue the example from the previous section where the
Connect i on object conn was created, here is an example of how to create the
St at ement object:

Satenent stnt = conn.createStatenent();

Note that there is nothing Oracle-specific about this statement; it follows standard
JDBC syntax.

Execute a Query and Return a Result Set Object

To query the database, use the execut eQuer y() method of your St at enent
object. This method takes a SQL statement as input and returns a JDBC Resul t Set
object.

To continue the example, once you create the St at enent object st nt , the next step
is to execute a query that populates a Resul t Set object with the contents of the
ENAME (employee name) column of a table of employees named EMP:

Resul t Set rset = stni. executeQuery ("SELECT enane FROM enp");

Again, there is nothing Oracle-specific about this statement; it follows standard
JDBC syntax.

Process the Result Set

Once you execute your query, use the next () method of your Resul t Set object to
iterate through the results. This method steps through the result set row by row,
detecting the end of the result set when it is reached.

To pull data out of the result set as you iterate through it, use the appropriate
get XXX() methods of the Resul t Set object, where XXX corresponds to a Java
datatype.

Basic Features 3-11

First Steps in JDBC

For example, the following code will iterate through the Resul t Set objectr set
from the previous section and will retrieve and print each employee name:

vhile (rset.next())
Systemout.println (rset.getSring(l));

Once again, this is standard JDBC syntax. The next () method returns false when it
reaches the end of the result set. The employee names are materialized as Java
strings.

For a complete sample application showing how to execute a query and print the
results, see "Listing Names from the EMP Table—Employee.java" on page 20-2.

Close the Result Set and Statement Objects

You must explicitly close the Resul t Set and St at ement objects after you finish
using them. This applies to all Resul t Set and St at ement objects you create
when using the Oracle JDBC drivers. The drivers do not have finalizer methods;
cleanup routines are performed by the cl ose() method of the Resul t Set and

St at ement classes. If you do not explicitly close your Resul t Set and

St at ement objects, serious memory leaks could occur. You could also run out of
cursors in the database. Closing a result set or statement releases the corresponding
cursor in the database.

For example, if your Resul t Set objectis r set and your St at ement object is
st nt, close the result set and statement with these lines:

rset.close();
stn.close();

When you close a St at enent object that a given Connect i on object creates, the
connection itself remains open.

Note: Typically, you should putcl ose() statementsina
finally clause.

Make Changes to the Database

To write changes to the database, such as for | NSERT or UPDATE operations, you
will typically create a Pr epar edSt at ement object. This allows you to execute a
statement with varying sets of input parameters. The pr epar eSt at ement ()
method of your JDBC Connect i on object allows you to define a statement that

3-12 JDBC Developer’'s Guide and Reference

First Steps in JDBC

takes variable bind parameters, and returns a JDBC Pr epar edSt at enment object
with your statement definition.

Use set XXX() methods on the Pr epar edSt at enent object to bind data into the
prepared statement to be sent to the database. The various set XXX() methods are
described in "Standard setObject() and Oracle setOracleObject() Methods" on

page 5-11 and "Other setXXX() Methods" on page 5-12.

Note that there is nothing Oracle-specific about the functionality described here; it
follows standard JDBC syntax.

The following example shows how to use a prepared statement to execute | NSERT
operations that add two rows to the EMP table. For the complete sample application,
see "Inserting Names into the EMP Table—InsertExample.java" on page 20-3.

/] Prepare to insert new nanes in the EMP tabl e
PreparedStatenent pstn =
conn. preparetatenent ("insert into EMP (EMPNQ ENAME) values (?, ?)");

/1 Add LESLIE as enpl oyee nunber 1500

pstn.setint (1, 1500); /1 The first ? is for BEMPNO
pstnm.setSring (2, "LESLIE"); /1 The second ? is for ENAME
/1 Do the insertion

pstnt . execute ();

/1 Add MARSHA as enpl oyee nunber 507

pstn.setint (1, 507); [l The first ? is for BEMPNO
pstm.setSring (2, "NMARSHA"); /1 The second ? is for ENAME
/! Do the insertion

pstnt . execute ();

// A ose the statenent
pstni. cl ose();

Commit Changes

By default, DML operations (I NSERT, UPDATE, DELETE) are committed
automatically as soon as they are executed. This is known as auto-commit mode. You
can, however, disable auto-commit mode with the following method call on the
Connect i on object:

conn. set Aut oConmit (fal se) ;

Basic Features 3-13

First Steps in JDBC

(For further discussion of auto-commit mode and an example of disabling it, see
"Disabling Auto-Commit Mode" on page 19-6.)

If you disable auto-commit mode, then you must manually commit or roll back
changes with the appropriate method call on the Connect i on object:

conn.commt();

or:

conn. rol | back();

A COW T or ROLLBACK operation affects all DML statements executed since the
last COVM T or ROLLBACK.

Important:

« If auto-commit mode is disabled and you close the connection
without explicitly committing or rolling back your last changes,
then an implicit COMM T operation is executed.

« Any DDL operation, such as CREATE or ALTER, always
includes an implicit COWM T. If auto-commit mode is disabled,
this implicit COM T will not only commit the DDL statement,
but also any pending DML operations that had not yet been
explicitly committed or rolled back.

Close the Connection

You must close your connection to the database once you finish your work. Use the
cl ose() method of the Connect i on object to do this:

conn. cl ose();

Note: Typically, you should putcl ose() statementsina
finally clause.

3-14 JDBC Developer’'s Guide and Reference

Sample: Connecting, Querying, and Processing the Results

Sample: Connecting, Querying, and Processing the Results

The steps in the preceding sections are illustrated in the following example, which
registers an Oracle JDBC Thin driver, connects to the database, creates a
St at ement object, executes a query, and processes the result set.

Note that the code for creating the St at enent object, executing the query,
returning and processing the Resul t Set object, and closing the statement and
connection all follow standard JDBC syntax.

inport java.sql.*;
inport java. nath.*;
inport java.io.*;

inport java. aw.*;

cl ass JdbcTest {
public static void main (String args []) throws SQLException {
/1 Load Oracle driver
Dri ver Manager . regi sterDri ver (new oracl e.jdbc.driver. acleDxiver());
/1 Gonnect to the | ocal database
Gonnection conn = Driver Manager . get Gonnect i on
("jdbc: oracl e: t hi n: @yhost : 1521: (RCL", "scott", "tiger");

/1 Query the enpl oyee nanes
Satenent stnt = conn.createStatenent ();
Resul t Set rset = stni. executeQuery ("SELECT enane FROM enp");
/1 Print the name out
vhile (rset.next ())
Systemout.println (rset.getSring (1));

//close the result set, statenent, and the connection
rset.close();
stm.close();
conn. cl ose() ;

}

If you want to adapt the code for the OCI driver, replace the Connecti on
statement with the following:

Qonnection conn = Driver Manager . get Gonnecti on
("jdbc: oracl e: oci 8: @¥Host Sring", "scott", "tiger");

Where MyHost St ri ng is an entry in the TNSNAMES. ORAfile.

Basic Features 3-15

Datatype Mappings

Datatype Mappings

The Oracle JDBC drivers support standard JDBC 1.0 and 2.0 types as well as
Oracle-specific BFI LE and ROW D datatypes and types of the REF CURSOR
category.

This section documents standard and Oracle-specific SQL-Java default type
mappings.

Table of Mappings

For reference, Table 3-2 shows the default mappings between SQL datatypes, JDBC
typecodes, standard Java types, and Oracle extended types.

The SQL Datatypes column lists the SQL types that exist in the database.

The JDBC Typecodes column lists data typecodes supported by the JDBC standard
and defined in the j ava. sqgl . Types class, or by Oracle in the

oracl e.jdbc. driver. Oracl eTypes class. For standard typecodes, the codes
are identical in these two classes.

The Standard Java Types column lists standard types defined in the Java language.

The Oracle Extension Java Types column lists the or acl e. sql . * Java types that
correspond to each SQL datatype in the database. These are Oracle extensions that
let you retrieve all SQL data in the form of a or acl e. sql . * Java type. Mapping
SQL datatypes into the or acl e. sql datatypes lets you store and retrieve data
without losing information. Refer to "Package oracle.sgl" on page 6-7 for more
information on the or acl e. sql . * package.

Table 3-2 Default Mappings Between SQL Types and Java Types

SQL Datatypes

JDBC Typecodes Standard Java Types Oracle Extension Java Types

STANDARD JDBC 1.0 TYPES:

CHAR java.sgl.Types.CHAR java.lang.String oracle.sql.CHAR
VARCHAR?2 java.sql.Types.VARCHAR java.lang.String oracle.sql.CHAR
LONG java.sql.Types.LONGVARCHAR java.lang.String oracle.sql.CHAR
NUMBER java.sgl.Types.NUMERIC java.math.BigDecimal oracle.sql.NUMBER
NUMBER java.sgl.Types.DECIMAL java.math.BigDecimal oracle.sql.NUMBER
NUMBER java.sgl.Types.BIT boolean oracle.sql.NUMBER
NUMBER java.sgl.Types.TINYINT byte oracle.sql.NUMBER

3-16 JDBC Developer’'s Guide and Reference

Datatype Mappings

Table 3-2 Default Mappings Between SQL Types and Java Types (Cont.)

SQL Datatypes

JDBC Typecodes

Standard Java Types

Oracle Extension Java Types

NUMBER java.sgl.Types.SMALLINT short oracle.sql.NUMBER
NUMBER java.sgl.Types.INTEGER int oracle.sql.NUMBER
NUMBER java.sgl.Types.BIGINT long oracle.sql.NUMBER
NUMBER java.sgl.Types.REAL float oracle.sql.NUMBER
NUMBER java.sgl.Types.FLOAT double oracle.sql.NUMBER
NUMBER java.sgl.Types.DOUBLE double oracle.sql.NUMBER
RAW java.sgl.Types.BINARY byte[] oracle.sql.RAW
RAW java.sgl.Types.VARBINARY byte[] oracle.sql.RAW
LONGRAW java.sgl.Types.LONGVARBINARY byte[] oracle.sql.RAW
DATE java.sgl.Types.DATE java.sgl.Date oracle.sql.DATE
DATE java.sgl.Types.TIME java.sql.Time oracle.sql.DATE
DATE java.sgl.Types.TIMESTAMP javal.sgl.Timestamp oracle.sql.DATE
STANDARD JDBC 2.0 TYPES:
BLOB java.sgl.Types.BLOB java.sql.Blob oracle.sql.BLOB
CLOB java.sgl.Types.CLOB java.sgl.Clob oracle.sql.CLOB

user-defined object

java.sgl.Types.STRUCT

java.sql.Struct

oracle.sql.STRUCT

user-defined
reference

java.sgl.Types.REF

java.sql.Ref

oracle.sql.REF

user-defined

java.sgl.Types. ARRAY

java.sql.Array

oracle.sql.ARRAY

collection

ORACLE EXTENSIONS:
BFILE oracle.jdbc.driver.OracleTypes.BFILE n/a oracle.sql.BFILE
ROWID oracle.jdbc.driver.OracleTypes.ROWID n/a oracle.sql.ROWID

REF CURSOR type

oracle.jdbc.driver.OracleTypes.CURSOR

java.sgl.ResultSet

oracle.jdbc.driver.OracleResultSet

Note: Under JDK 1.1.x, the Oracle package or acl e. j dbc2 is
required to support JDBC 2.0 types. (Under JDK 1.2.x they are

supported by the standard j aval . sql package.)

Basic Features 3-17

Datatype Mappings

For a list of all the Java datatypes to which you can validly map a SQL datatype, see
"Valid SQL-JDBC Datatype Mappings" on page 21-2.

See Chapter 6, "Overview of Oracle Extensions", for more information on type
mappings. In Chapter 6 you can also find more information on the following:

« packagesoracl e.sql,oracl e.jdbc.driver,andoracle.jdbc2

« type extensions for the Oracle BFI LE and ROW D datatypes and user-defined
types of the REF CURSOR category

Notes Regarding Mappings

This section goes into further detail regarding mappings for NUVMBER and
user-defined types.

Regarding User-Defined Types

User-defined types such as objects, object references, and collections map by default
to weak Java types (such as j ava. sql . St ruct), but alternatively can map to
strongly typed custom Java classes. Custom Java classes can implement one of two
interfaces:

«» thestandardj ava. sql . SQLDat a (for user-defined objects only)

« the Oracle-specific or acl e. sql . Cust onDat um(primarily for user-defined
objects, object references, and collections, but able to map from any SQL type
where you want customized processing of any kind)

For information about custom Java classes and the SQLDat a and Cust onDat um
interfaces, see "Mapping Oracle Objects" on page 8-2 and "Creating and Using
Custom Object Classes for Oracle Objects" on page 8-10. (Although these sections
focus on custom Java classes for user-defined objects, there is some general
information about other kinds of custom Java classes as well.)

Regarding NUMBER Types

For the different typecodes that an Oracle NUMBER value can correspond to, call the
getter routine that is appropriate for the size of the data for mapping to work
properly. For example, call get Byt e() togetalavati nyi nt value, for an item x
where -128 < x < 128.

3-18 JDBC Developer’'s Guide and Reference

Java Streams in JDBC

Java Streams in JDBC
This section covers the following topics:
« Streaming LONG or LONG RAW Columns
« Streaming CHAR, VARCHAR, or RAW Columns
« Data Streaming and Multiple Columns
« Streaming and Row Prefetching
« Closing a Stream
« Streaming LOBs and External Files

This section describes how the Oracle JDBC drivers handle Java streams for several
datatypes. Data streams allow you to read LONG column data of up to 2 gigabytes.
Methods associated with streams let you read the data incrementally.

Oracle JDBC drivers support the manipulation of data streams in either direction
between server and client. The drivers support all stream conversions: binary,
ASCII, and Unicode. Following is a brief description of each type of stream:

« binary stream—Used for RAWbytes of data. This corresponds to the
get Bi narySt ream() method.

« ASCII stream—Used for ASCII bytes in ISO-Latin-1 encoding. This corresponds
to the get Asci i St rean() method.

= Unicode stream—Used for Unicode bytes with the UCS- 2 encoding. This
corresponds to the get Uni codeSt r ean() method.

The methods get Bi naryStrean(),get Ascii Stream(), and

get Uni codeSt r ean() return the bytes of data in an | nput St r eamobject. These
methods are described in greater detail in Chapter 7, "Working with LOBs and
BFILEs".

For a complete sample application showing how to read and write stream data, see
"Streams—StreamExample.java" on page 20-18.

Streaming LONG or LONG RAW Columns

When a query selects one or more LONG or LONG RAWcolumns, the JDBC driver
transfers these columns to the client in streaming mode. After a call to
execut eQuery() or next (), the data of the LONGcolumn is waiting to be read.

Basic Features 3-19

Java Streams in JDBC

To access the data in a LONG column, you can get the column as a Java

I nput St r eamand use the r ead() method of the | nput St r eamobject. As an
alternative, you can get the data as a string or byte array, in which case the driver
will do the streaming for you.

You can get LONG and LONG RAWdata with any of the three stream types. The driver
performs NLS conversions for you, depending on the character set of your database
and the driver. For more information about NLS, see "JDBC and NLS" on page 18-2.

LONG RAW Data Conversions

A call to get Bi narySt rean() returns RAWdata "as-is". A call to

get Asci i Stream() converts the RAWdata to hexadecimal and returns the ASCII
representation. A call to get Uni codeSt r eam() converts the RAWdata to
hexadecimal and returns the Unicode bytes.

For example, if your LONGRAWCcolumn contains the bytes 20 21 22, you receive the
following bytes:

LONG RAW BinaryStream ASCIIStream UnicodeStream
20 21 22 20 21 22 49 52 49 53 49 54 0049 0052 0049 0053 0049 0054
which is also which is also:

R S R CH R T4 % 1T 6

For example, the LONG RAWvalue 20 is represented in hexadecimal as 14 or "1" "4".
In ASCII, 1 is represented by "49" and "4" is represented by "52". In Unicode, a
padding of zeros is used to separate individual values. So, the hexadecimal value 14
is represented as 0 "1" 0 "4". The Unicode representation is 0 "49" 0 "52".

LONG Data Conversions

When you get LONGdata with get Asci i St r ean(), the drivers assume that the
underlying data in the database uses an US7ASCI | or VE8] SC8859P1 character
set. If the assumption is true, the drivers return bytes corresponding to ASCII
characters. If the database is not using an US7ASCI | or WE8I SCB8859P1 character
set, a call to get Asci i St ream() returns meaningless information.

When you get LONGdata with get Uni codeSt r ean{), you get a stream of
Unicode characters in the UCS- 2 encoding. This applies to all underlying database
character sets that Oracle supports.

When you get LONGdata with get Bi nar ySt r ean(), there are two possible cases:

3-20 JDBC Developer’'s Guide and Reference

Java Streams in JDBC

« Ifthe driver is JDBC OCI and the client character set is not US7ASCI | or
WE8| SO8859P1, then a call to get Bi nar ySt r ean() returns UTF- 8. If the
client character set is US7ASCI | or WE8I SOB859P1, then the call returns a
US7ASCI | stream of bytes.

« Ifthe driver is JDBC Thin and the database character set is not US7TASCI | or
WE8| SO8859P1, then a call to get Bi nar ySt r ean() returns UTF- 8. If the
server-side character set is US7ASCI | or WE8I SGB859P1, then the call returns a
US7ASCI | stream of bytes.

For more information on how the drivers return data based on character set, see
"JDBC and NLS" on page 18-2.

Note: Receiving LONGor LONG RAWcolumns as a stream (the
default case) requires you to pay special attention to the order in
which you receive data from the database. For more information,
see "Data Streaming and Multiple Columns" on page 3-25.

Table 3-3 summarizes LONG and LONG RAWdata conversions for each stream type.

Table 3-3 LONG and LONG RAW Data Conversions

Datatype BinaryStream AsciiStream UnicodeStream
LONG bytes representing characters in bytes representing bytes representing
Unicode UTF- 8. The bytes can characters in 1ISO-Latin-1 characters in Unicode
represent characters in US7ASCI | or (VE8I SO8859P1) encoding UCS- 2 encoding
WE8| SOB8859P1 if:
« thevalue of NLS_LANGonN the
client is US7ASCI | or
VE8| SCB859P1.
or:
« the database character set is
US7ASCI | or \EE8I SO8859P1.
LONG RAW |as-is ASCII representation of Unicode representation
hexadecimal bytes of hexadecimal bytes

Streaming Example for LONG RAW Data

One of the features of a get XXXSt r ean() method is that it allows you to fetch data
incrementally. In contrast, get Byt es() fetches all the data in one call. This section
contains two examples of getting a stream of binary data. The first version uses the

Basic Features 3-21

Java Streams in JDBC

get Bi naryStrean() method to obtain LONG RAWdata; the second version uses
the get Byt es() method.

Getting a LONG RAW Data Column with getBinaryStream() This Java example writes the
contents of a LONGRAWcolumn to a file on the local file system. In this case, the
driver fetches the data incrementally.

The following code creates the table that stores a column of LONG RAWdata
associated with the name LESLIE:

-- S code:
create tabl e streanexanpl e (NAMVE varchar2 (256), G FDATA long raw;

insert into streanexanpl e values (' LESLIE, ’'00010203040506070809');

The following Java code snippet writes the data from the LESLIE LONG RAWcolumn
intoafilecalledl eslie.gif:

Resul t Set rset = stnt. execut eQuery
("sel ect A FDATA from streanexanpl e where NAME=' LESLIE ") ;

/1 get first row

if (rset.next())

{
/] Get the AQF data as a streamfromQacle to the client
Input Sreamgi f_data = rset.getB naryStream (1);
try

{
FleQutputSreamfile = null;

file =newFileQutputStream("leslie.gif");

int chunk;

while ((chunk = gif _data.read()) !=-1)
file wite(chunk);

}
cat ch (Exception €)

{
Sring err = e.toXring();

Systemout. println(err);

}
finally

if file!=null()
file.close();

3-22 JDBC Developer’'s Guide and Reference

Java Streams in JDBC

In this example the contents of the Gl FDATA column are transferred incrementally
in chunk-sized pieces between the database and the client. The | nput St r eam
object returned by the call to get Bi nar ySt r ean{) reads the data directly from the
database connection.

Getting a LONG RAW Data Column with getBytes() This version of the example gets the
content of the G FDATA column with get Byt es() instead of

get Bi naryStrean() . In this case, the driver fetches all the data in one call and
stores it in a byte array. The previous code snippet can be rewritten as:

Resul t Set rset2 = stni.execut eQiery
("sel ect A FDATA from streanexanpl e where NAME=' LESLIE ") ;

/1 get first row
if (rset2.next())

{

/] Get the AQF data as a streamfromQacle to the client
byte[] bytes = rset2.getBytes(1);
try

{
FleQutputSreamfile = null;

file =newFileQutputStream ("l eslie2.gif");
file.wite(bytes);

}

cat ch (Exception €)

{
Sring err = e.toXring();

Systemout.println(err);

}
finally

if file!=null()
file.close();

}

Because a LONGRAWcolumn can contain up to 2 gigabytes of data, the get Byt es()
example will probably use much more memory than the get Bi nar ySt r ean()
example. Use streams if you do not know the maximum size of the data in your
LONGor LONGRAWcolumns.

Basic Features 3-23

Java Streams in JDBC

Avoiding Streaming for LONG or LONG RAW

The JDBC driver automatically streams any LONGand LONG RAWcolumns.
However, there may be situations where you want to avoid data streaming. For
example, if you have a very small LONG column, you might want to avoid returning
the data incrementally and instead, return the data in one call.

To avoid streaming, use the def i neCol umType() method to redefine the type of
the LONG column. For example, if you redefine the LONGor LONG RAWcolumn as
type VARCHAR or VARBI NARY, then the driver will not automatically stream the
data.

If you redefine column types with def i neCol umType(), you must declare the
types of all columns in the query. If you do not, execut eQuer y() will fail. In
addition, you must cast the St at ement object to an

oracl e.jdbc.driver. O acl eSt at ement object.

As an added benefit, using def i neCol uimType() saves the driver two round
trips to the database when executing the query. Without def i neCol uimType(),
the JDBC driver has to request the datatypes of the column types.

Using the example from the previous section, the St at ement object st nt is cast to
the Or acl eSt at ement and the column containing LONG RAWdata is redefined to
be of the type VARBI NARAY. The data is not streamed—instead, it is returned in a
byte array.

//cast the statenent stnt to an O acl eSt at enent
oracle.jdbc. driver.Oacletatenent ostm =
(oracle.jdbc.driver.Oacl eatenent)stnt;

//redefine the LONG col um at index position 1 to VARB NARY
ost mi. def i neGol umType(1, Types. VARB NARY);

/! Do a query to get the inages naned ' LESLIE
Resul t Set rset = ostnt.execut eQiery
("sel ect A FDATA from streanexanpl e where NAME=' LESLIE ") ;

/1 The data is not streaned here
rset.next();
byte [] bytes = rset.getBytes(1);

Streaming CHAR, VARCHAR, or RAW Columns

If you use the def i neCol uimType() Oracle extension to redefine a CHAR,
VARCHAR, or RAWcolumn as a LONGVARCHAR or LONGVARBI NARY, then you can get
the column as a stream. The program will behave as if the column were actually of

3-24 JDBC Developer’'s Guide and Reference

Java Streams in JDBC

type LONGor LONG RAW Note that there is not much point to this, because these
columns are usually short.

If you try to get a CHAR, VARCHAR, or RAWcolumn as a data stream without
redefining the column type, the JDBC driver will return a Java | nput St r eam but
no real streaming occurs. In the case of these datatypes, the JDBC driver fully
fetches the data into an in-memory buffer during a call to the execut eQuer y()
method or next () method. The get XXXSt r ean() entry points return a stream
that reads data from this buffer.

Data Streaming and Multiple Columns

If your query selects multiple columns and one of the columns contains a data
stream, then the contents of the columns following the stream column are not
available until the stream has been read, and the stream column is no longer
available once any following column is read. Any attempt to read a column beyond
a streaming column closes the streaming column. See "Streaming Data Precautions"
on page 3-28 for more information.

Streaming Example with Multiple Columns
Consider the following query:

Resul t Set rset = stnt. execut eQuery
("sel ect DATECO, LONGOA, NUMBEROCL from TABLE');
vhi | e rset. next ()
{
//get the date data
java.sql .Date date = rset.getDate(1);

/1 get the streaning data
Input Streamis = rset. get Ascii Strean{?2);

I/l Qpen a file to store the gif data
FleQutputSreamfile = new F | eQut put Sream ("ascii.dat");

/1 Loop, reading fromthe ascii streamand
/I witetothe file
int chunk;
vwhile ((chunk = is.read ()) !=-1)
file wite(chunk);
/1 Aose the file
file.close();

Basic Features 3-25

Java Streams in JDBC

//get the nunber colunn data
int n=rset.getlnt(3);
}

The incoming data for each row has the following shape:

<a dat e><the characters of the |ong col um><a nunber >

As you process each row of the iterator, you must complete any processing of the
stream column before reading the number column.

An exception to this behavior is LOB data, which is also transferred between server
and client as a Java stream. For more information on how the driver treats LOB
data, see "Streaming LOBs and External Files" on page 3-27.

Bypassing Streaming Data Columns

There might be situations where you want to avoid reading a column that contains
streaming data. If you do not want to read the data for the streaming column, then
call the cl ose() method of the stream object. This method discards the stream data
and allows the driver to continue reading data for all the non-streaming columns
that follow the stream. Even though you are intentionally discarding the stream, it
is good programming practice to call the columns in SELECT-list order.

In the following example, the stream data in the LONGcolumn is discarded and the
data from only the DATE and NUMBER column is recovered:

Resul t Set rset = stnt. execut eQuery
("sel ect DATECO, LONGOA, NUMBEROCL from TABLE');

vhi | e rset. next ()

{
//get the date
java.sql .Date date = rset.getDate(1);
/] access the streamdata and discard it wth close()
Input Streamis = rset. get Ascii Strean{?2);
is.close();
/1 get the nunber col umrm dat a
int n=rset.getint(3);
}

3-26 JDBC Developer’'s Guide and Reference

Java Streams in JDBC

Streaming LOBs and External Files

The term large object (LOB) refers to a data item that is too large to be stored directly
in a database table. Instead, a locator is stored in the database table and points to
the location of the actual data. External files (binary files, or BFILES) are managed
similarly. The JDBC drivers can support these types through the use of streams:

« BLOBs (unstructured binary data)
« CLOBs (character data)
« BFILEs (external files)

LOBs and BFILEs behave differently from the other types of streaming data
described in this chapter. The driver transfers data between server and client as a
Java stream. However, unlike most Java streams, a locator representing the data is
stored in the table. Thus, you can access the data at any time during the life of the
connection.

Streaming BLOBs and CLOBs

When a query selects one or more CLOB or BLOB columns, the JDBC driver transfers
to the client the data pointed to by the locator. The driver performs the transfer as a
Java stream. To manipulate CLOB or BLOB data from JDBC, use methods in the
Oracle extension classes or acl e. sql . BLOBand or acl e. sql . CLOB. These
classes provide functionality such as reading from the CLOB or BLOB into an input
stream, writing from an output stream into a CLOB or BLOB, determining the
length of a CLOB or BLOB, and closing a CLOB or BLOB.

For a complete discussion of how to use streaming CLOB and BLOB data, see
"Reading and Writing BLOB and CLOB Data" on page 7-6.

Important: The JDBC 2.0 specification states that

Pr epar edSt at ement methods set Bi narySt rean() and

set Obj ect () can be used to input a stream value as a BLOB, and
that the Pr epar edSt at enent methods set Asci i Stream(),
set Uni codeSt ream(), set Char act er Strean(), and

set Obj ect () can be used to input a stream value as a CLOB. This
bypasses the LOB locator, going directly to the LOB data itself.

In the implementation of the Oracle JDBC drivers, this functionality
is supported only for a configuration using an 8.1.6 database and
8.1.6 JDBC OCI driver. Do not use this functionality for any other
configuration, as data corruption can result.

Basic Features 3-27

Java Streams in JDBC

Streaming BFILEs

An external file, or BFILE, is used to store a locator to a file outside the database,
stored somewhere on the filesystem of the data server. The locator points to the
actual location of the file.

When a query selects one or more BFI LE columns, the JDBC driver transfers to the
client the file pointed to by the locator. The transfer is performed in a Java stream.
To manipulate BFILE data from JDBC, use methods in the Oracle extension class
or acl e. sqgl . BFI LE. This class provides functionality such as reading from the
BFILE into an input stream, writing from an output stream into a BFILE,
determining the length of a BFILE, and closing a BFILE.

For a complete discussion of how to use streaming BFILE data, see "Reading BFILE
Data" on page 7-18.

Closing a Stream

You can discard the data from a stream at any time by calling the stream’s cl ose()
method. You can also close and discard the stream by closing its result set or
connection object. You can find more information about the cl ose() method for
data streams in "Bypassing Streaming Data Columns" on page 3-26. For information
on how to avoid closing a stream and discarding its data by accident, see
"Streaming Data Precautions" on page 3-28.

Notes and Precautions on Streams

This section discusses several noteworthy and cautionary issues regarding the use
of streams:

« Streaming Data Precautions
« Using Streams to Avoid Limits on setBytes() and setString()

« Streaming and Row Prefetching

Streaming Data Precautions

This section describes some of the precautions you must take to ensure that you do
not accidentally discard or lose your stream data. The drivers automatically discard
stream data if you perform any JDBC operation that communicates with the
database, other than reading the current stream. Two common precautions are
described:

= Use the stream data after you access it.

3-28 JDBC Developer’'s Guide and Reference

Java Streams in JDBC

To recover the data from a column containing a data stream, it is not enough to
get the column; you must immediately process its contents. Otherwise, the
contents will be discarded when you get the next column.

« Call the stream column in SELECT-list order.

If your query selects multiple columns, the database sends each row as a set of
bytes representing the columns in the SELECT order. If one of the columns
contains stream data, the database sends the entire data stream before
proceeding to the next column.

If you do not use the SELECT-list order to access data, then you can lose the
stream data. That is, if you bypass the stream data column and access data in a
column that follows it, the stream data will be lost. For example, if you try to
access the data for the NUMBER column before reading the data from the stream
data column, the JDBC driver first reads then discards the streaming data
automatically. This can be very inefficient if the LONGcolumn contains a large
amount of data.

If you try to access the LONG column later in the program, the data will not be
available and the driver will return a "St r eam Cl osed" error.

The second point is illustrated in the following example:

Resul t Set rset = stnt. execut eQuery
("sel ect DATECO, LONGOA, NUMBEROCL from TABLE');
vhi | e rset. next ()

{
int n=rset.getInt(3); // This discards the streaming data
Input Streamis = rset. getAscii Strean{?2);
/! Raises an error: streamcl osed.
}

If you get the stream but do not use it before you get the NUMBER column, the stream
still closes automatically:

Resul t Set rset = stnt. execut eQuery
("sel ect DATECQ, LONGOA, NUMBERGOL from TABLE');
vhi | e rset. next ()

{
Input Streamis = rset.getAscii Strean{2); // Get the stream
int n=rset.getlnt(3);
/] Dscards streaning data and cl oses the stream

}

int ¢ =is.read(); // cis -1 no nore characters to read-stream cl osed

Basic Features 3-29

Java Streams in JDBC

Using Streams to Avoid Limits on setBytes() and setString()

There is a limit on the maximum size of the array which can be bound using the
Pr epar edSt at enent class set Byt es() method, and on the size of the string
which can be bound using the set St ri ng() method.

Above the limits, which depend on the version of the server you use, you should
use set Bi naryStrean() or set Charact er Strean{) instead.

When connecting to an Oracle8 database, the limit for set Byt es() is 2000 bytes
(the maximum size of a RAWin Oracle8) and the limit for set St ri ng() is 4000
bytes (the maximum size of a VARCHARZ in Oracle8).

When connecting to an Oracle7 database, the limit for set Byt es() is 255 bytes
(the maximum size of a RAWin Oracle7) and the limit for set St ri ng() is 2000
bytes (the maximum size of a VARCHARZ in Oracle?).

The 8.1.6 Oracle JDBC drivers may not raise an error if you exceed the limit when
using set Byt es() orset String(), butyou may receive the following error:

CRA-17070: Data si ze bigger than max size for this type

Future versions of the Oracle drivers will raise an error if the length exceeds these
limits.

Note: This discussion applies to binds in SQL, not PL/SQL.

Streaming and Row Prefetching
If the JDBC driver encounters a column containing a data stream, row prefetching is
set back to 1.

Row prefetching is an Oracle performance enhancement that allows multiple rows
of data to be retrieved with each trip to the database. See "Oracle Row Prefetching"
on page 13-20.

3-30 JDBC Developer’'s Guide and Reference

Stored Procedure Calls in JDBC Programs

Stored Procedure Calls in JDBC Programs

This section describes how the Oracle JDBC drivers support the following kinds of
stored procedures:

« PL/SQL Stored Procedures

= Java Stored Procedures

PL/SQL Stored Procedures

Oracle JDBC drivers support execution of PL/SQL stored procedures and
anonymous blocks. They support both SQL92 escape syntax and Oracle PL/SQL
block syntax. The following PL/SQL calls would work with any Oracle JDBC
driver:

/1 SQ92 synt ax
Cal | abl eSt at enent ¢s1 = conn. pr epareCal |
("{call proc (?,?)3}") ; // stored proc
Cal | abl eSt at enent ¢s2 = conn. pr epar eCal |
("{? =cal func (?,?)}") ; // stored func
/1 Gacle PL/SQL